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Abstract—Under the trend of the increasing popularity of
computation-intensive applications, computation offloading has
been extensively studied to tackle the battery and computing
ability limits of smart mobile devices. In this paper, a computation
offloading scheme is investigated in an ultra-dense Mobile Edge
Computing network, where the distributed offloading strategy of
each Edge Computing Node (ECN) is formulated as a multi-user
non-cooperative dynamic stochastic game, and transformed into a
much tractable mean field game (MFG) to reduce the computa-
tional complexity. The two coupled partial differential equations,
namely the Hamilton-Jacobi-Bellman (HJB) and Fokker-Planck-
Kolmogorov equations are deduced, and an Artificial Neural
Network (ANN) is designed to implement supervised learning to
approximately solve the HJB equation with an analytic closed-
form. The simulation results prove that the proposed ANN could be
trained efficiently to solve the HJB equation in lower computational
cost, and the MFG-based strategy yields lower cost with compared
to conventional methods.

Index Terms—Computation offloading, mean field games, super-
vised learning

I. INTRODUCTION

Computation offloading via Mobile Edge Computation
(MEC) networks enables sophisticated applications to the mo-
bile devices with constrained battery lifetime, and the strict de-
lay requirements could be met due to the short distance between
the devices and the computation nodes [1]. In [2], computation
offloading decision and computation resource allocation are
jointly optimized in a cloud-MEC collaborative scheme. The au-
thors in [3] pursued energy-efficient MEC designs to minimize
the energy consumption in both partial and binary offloading.
In [4], a two-stage heuristic optimization algorithm is proposed
for the joint optimization problem of computation offloading
and resource allocation. In addition to centralized optimization,
the distributed offloading scheme has research significance in
ultra-dense networks, where gaming is usually applied for
distributed strategies, and mean field game (MFG) for large-
scale interactions in gaming. In [5], a dynamic stochastic game
is formulated to investigate the energy efficiency performance
of optimal proactive scheduling strategies. The effects of the
interference between D2D users are considered to formulate a
MFG for a distributed power control method in [6]. In [7], a
mean-field-type game approach is proposed for each computing
node to compute the portion of the aggregate computation task
for offloading.

This work was supported by the National Natural Science Foundation of
China (Grant No.61471026).

The MFG relies on two coupled partial differential equations
(PDEs), namely a Hamilton-Jacobi-Bellman (HJB) equation and
a Fokker-Planck-Kolmogorov (FPK) equation. Finite Difference
Method (FDM), along with Finite Element Method (FEM) and
Finite Volume Method (FVM) have been acknowledged as ef-
fective approaches to ordinary and partial differential equations
[8], but they yield high complexity for establishing a meshing
and solving the PDE numerically, and the obtained solutions
are discrete with limited differentiability. In this work, we
implement supervised learning to solve the PDE by an Artificial
Neural Network (ANN), which provides a differentiable and
closed analytic form approximate solution, and only needs one
training to be able to solve the PDE for any set of parameters.

Our main contributions are summarized as follows:

o We formulate the computation offloading problem of Edge
Computing Nodes (ECNs) as a non-cooperative Dynamic
Stochastic Game (DSG), in consideration of the pro-
hibitively complexity brought by the great number of
ECNs, we transform the DSG into an MFG, which is a
two-body gaming.

o The optimal strategy for the MFG relies on the HJB
equation, which is solved by a designed ANN, and the
solution is also compared with that solved by FDM to
verify the validity and effectiveness.

« Simulation results reveal that the proposed neural network
could fit the HIB equation well, and the offloading strategy
obtained by the MFG yields smaller cumulative cost than
conventional strategies.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We investigate an Orthogonal Frequency Division Multiplex-
ing (OFDM) MEC network as shown in Fig. 1, where smart
mobile devices can offload their computation-intensive tasks
to the task aggregator (TA) in the area or cells they attached
to. The TA can collect all the computation tasks in its serving
reglon and around which the ECNs, denoted by N={EC Ny,

-+, ECN,, ---, EC N}, have idle computation resource may
devote their energy to offload computation tasks from the TA.
The ECNs may not necessarily belong to the same operator, e.g.,
the ECNs are deployed by some Edge Computing operators
whereas the TA belongs to an IoT/Cloud network operator,
therefore each ECN will be paid by the TA for the processed
tasks in monetary form.
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A. Channel Model

Let h;(t) denote the channel gain between ECN; and the
TA at time-slot ¢ under a block-fading channel model [9], h;(t)
remains constant during each duration At of time slot ¢t € T =
{0, ..., T}, the channel dynamics are modeled as an Ornstein-
Uhlenbeck process as follows [10]:

ARi(t) = at, hi(t) At + op AW (L), 1)

where «(t, h;(t)) is a deterministic smooth function, and oy, ;
with positive value characterizes the long term variance of the
process, and W (¢) is a standard Brownian motion which models
fast fading and prediction uncertainty [11].

B. Reward Model

The ECNs compete for the tasks to gain reward paid by
the TA, and the reward depends on the computation offloading
supply of the whole market. According to [12], the price of
goods should gradually fall and flatten out with supply, so we
define the price:

K N =1,
N
ei(t) = > ot )
K - exp(—E%) N > 2,

where « is a basic price when there is no competition, £, takes
a positive value, affects the steepness of the curve, and rj(t)
denotes the downloading rate of EC' IV}, so the reward of EC'V;
at slot £ could be calculated as:

R;(t) = i(t) - ri(2). 3
C. Cost Model

The cost of EC'N; includes the energy cost and the down-
loading bandwidth cost:

1) Computation Cost: It is assumed that the CPU processing
rate of ECN; is normalized to the downlink transmission rate
r;(t) to stabilize its buffer size, and according to [13], the power
consumption is proportional to the square of normalized CPU
processing rate. The energy cost of ECN; at slot ¢ is:

CE(t) = Chri(t), 4)

where k and ( are the proportion coefficient and price coeffi-
cient, respectively.

2) Bandwidth Cost: For downloading the tasks, the ECNs
also need to pay to the BS for the transmission bandwidth, as
often adopted in the MFG in caching works of Bennis et al.
[14] [15]. Note that there is no downlink intra-cell interference
since OFDM channels are assumed in this system, so denote
the transmission power from the TA to each EC'N; by P;, and
denote the power of Additive white Gaussian noise by o2, the
bandwidth B;(t) can be calculated through the Shannon theorem
as B;(t) = ri(t)/logy (1 + %Z(t)), so denote the coefficient by
p, the bandwidth cost at slot tis:

CP(t) = pri(t)/ logy (1 + P’Z;(t) ) 5)

n

To this end, the cost of ECN, to fulfill the computation
offloading task from TA during slot ¢ can be calculated as:

Ci(t) = CF (1) + CP (1). (©)

D. Problem Formulation
Each EC'N; needs to decide the optimal offloading rate r;(t)
at the beginning of each slot ¢ in a bounded action set [0, r[***],
based on the observation of the stare S;(t). According to the
analysis of reward and cost in Section II, the state of ECN;

should include the channel gain and the energy remained, which
is defined as a two-dimensional variable:

Si(t) = [hi(t), E5(t)]. (M
During a given time duration, based on the observation of the

state, EC'N; tries to minimize the objective function:

T
f}l(l})lE > (Cilt) = Ri(t)) + F(E,(T))
o t=0
st. AE;(t) = —kri(t)At, ®
Ahi(t) = a(t, hi(t)) At + op ;AW (t),
E;(0) = Ey,

where F(E;(T)) is the penalty function designed to penalize
ECN; for failing to make use of all the energy for offloading
at the last slot 7", which is defined as:

F(E;(T)) = ¢peBT) — ¢, 9)

Here, F(E;(T)) = 0, if E;(T) = 0. If E;(T) > 0, F(E;(T))
takes a sufficiently large positive value for punishment. It is
assumed that the initial energy F;(0), channel state h;(0), and
the stochastic differential equations (SDE) parameters «.(t) and
oy, in (1) are known at t = 0. Each ECN solves its version of
the optimization problem in (8) at the same time, resulting in
an N-user non-cooperative DSG.

III. NON-COOPERATIVE DYNAMIC STOCHASTIC GAME
(DSG) AND MEAN FIELD THEORY
A. Derivation of The Optimal Strategy

To derive the optimal strategy to (8), the continuous-form
value function [16] of EC'N; is given as follow:

v} (t,5) = minE

T
ri(t) /t (Ci(u) = Ri(u))du + F(E(T)) | ,

(10)




which captures the minimum cost EC N; would get from slot ¢
until T, under state S;(t). And the optimal running cost v} (¢, S)
is the unique solution to the HIB equation [17], which is given
as follows:

oy (t,S) = —m(ig[asvf(t, S)-0S + Ci(t) — Ri(t)], (a1

according to (8), the Hamiltonian of (11) is defined as [18]:
H(r;(t),S:(t), Vvi(t,S)) = m(itr)l[fkr (t)0g, v} (t,S)

i

(12)
Ri(t)],

and since the optimal running cost trajectory v} (t,S) is the
unique solution to the HJB equation [17], we take partial
derivative with respect to 7;(t) and equals it to zero, the optimal
offloading strategy for FC'N; can be obtained as:

Yilt) — i@j};;ﬁiﬁﬁﬂj
) = R om0, 9)

The Hamiltonian of the DSG (12) is easy to be proved smooth
by checking the derivatives, which validates the existence of the
Nash equilibrium for the DSG [19]. However, to find a Nash
equilibrium for the N-user DSG requires solving N coupled
HIJB equations for each EC'N; [17], which makes it impractical
when N grows large. To tackle the curse of dimensionality, we

propose to transform the NN-user non-cooperative DSG into a
MFG to simplify the solving.

B. Transformation of DSG

According to [20], we consider the four following hypotheses
(HI-H4) for the investigated computation offloading game:

e HI-Rational expectations and behaviors of the players:
Each ECN individually makes a rational offloading deci-
sion to minimize the cost function

o H2-Interchangeability of the states among the players:
ECNs sharing the same state would make the same de-
cision, to this end, only one unique MFG-based strategy
r*(t, S) needs to be adopted instead of NV strategies, which
greatly simplifies the game.

o H3-The existence of the continuum of the players: The
presence of a large number of ECNs in the game ensures
the existence of the continuum of the players.

e H4-Social interaction between players through the mean
field: Each ECN interacts with the mean field game instead
of interacting with all the other ECNs.

The DSG could be transformed into an MFG based on the
hypotheses (HI-H4), and the mean field is defined as a statistical
distribution of the state space. Denote M (t, S) as the proportion
of ECNs in state S at time-slot ¢, the probability density of
ECNs in a specific state could be expressed as:

2
a(t)on,vi(t, S) + %aiihiv;‘ (t,S) + Ci(t) —

(13)

m(t,§) = lim M(t,5) = lim —Z]ls =5, (14)

N—o0
where the indicator function 1 returns 1 if the condition is
satisfied, and O otherwise.
In a mean field game, each player (ECN in this work) interacts
with the mean field instead of interacting with all the other

players separately. Since the ECNs’ strategies influence each
other on the price, a mean field price needs to be defined
based on the MFG-based offloading strategy and the mean field
m(t,.S), which is given as follows:

U(t) zqﬁexp(—{“/ﬂ/gm(t, S)r*(t, S)dhdE),

where H and & are the value space of h and F, respectively.

With the mean field m(¢,S) and mean field price U(t)
defined, the N-body DSG in (8) could be transformed into an
equivalent 2-body MFG, where a generic player interacts with
the mean field:

15)

1) First body - A generic ECN: Fix all the other ECNs’
strategies, one ECN can compute its optimal offloading strategy
via the mean field HIB equation:

0" (t,) = —mindsv"(1,5) - 9,5(1) + C(1) = R1)), 16)

2) Second body - The mean field: It could be deduced from
(14) that the mean field is a collective of the other N —1 ECNs’
strategies, whose evolution corresponds to the Fokker-Planck-

Kolmogorov (FPK) equation [21]:
om(t,S) = 10h8hhm(t S)
— On(a(t)m ( ,8)) + kop(r*(t)m(t, 5)).

The mean field equilibrium (MFE) of this MFG is defined by
the value function in (16) and the mean field in (17), and the
optimal trajectory can be obtained by solving the two coupled
equations iteratively, the iteration could be guaranteed converged
since all the involved functions are smooth [22].

a7)

IV. SOLVING HJB EQUATION VIA SUPERVISED LEARNING

FDM has been acknowledged as an effective approach to
differential equations [8], but the obtained solutions are dis-
crete and limited in differentiability [23]. So in this work, we
implement supervised learning to solve the HIB equation by an
ANN, which provides an approximate differentiable and closed
analytic form solution.

As described in Section III, the optimal strategy of any ECN
relies on the partial derivative of the value function, which is the
solution to the HJB equation (16), and satisfies the following
initial and boundary conditions:

{ v=0,when e =0,

v=F(e),when t =T, (18)

so according to [24], a trial solution vTE could be defined to

satisfy the initial and boundary conditions (18):
VTR =exp(t—T) - Fle)+e(t—T)Z, (19)

where Z is the output of the designed neural network, which
includes the weights for training, and the input of the neural



network is the state, which is given by a three-column array:

to €o ho
to €o hi
X=| t eo haim-1 |, (20)
to (&1 ho
tdim—l €dim—1 hdinz—l

where dim is the dimension of each domain of the state, each
row of X represents a combination of ¢, e, and h. Assume the
number of neurons in the hidden layer is y, then the weights
matrix between the input layer and the hidden layer is:

. Wo,0 Wo,1 wo,y—1
W= [wio wi: Wiy-1 |, 21
w20 W2,1 W2,y—1

so the hidden layer could be expressed as: Y =X W+b,
where b is the bias term. Denote the weights from the hidden
layer to the output layer as: K = (ko, k1, ..., ky—1)T, the output
layer could be expressed:

. Lo 1 ,
Z=o(Y) K=—"= K,

1+ exp(-Y) @2)

activate function o(-) is fit to this work since whose derivatives
could be expressed by the function itself:

{ o'(u) =o(u) - [1 —o(u)],

o"(u) = o(u) - [1 —o(u)]? — o) [L —o(u)],

this property is important to represent the partial derivatives of
the value function, note that the time-slot in the input layer,
is timed by the first row of W, and similar for e and h, so
according to [24], the partial derivatives of the output could be
expressed as:

(23)

22 — W0 x oY) x (1 o(¥)) - K,
% = Wi xo(Y) x(1-o(Y))- K,
gfg#: W2 x oY) x (1-0(Y))- K, o
2 =W[22x oY) x (1—0a(Y)) x (1-2x0o(Y)) (212),

where (x) is the element-wise multiplication and () is the
matrix multiplication, with (24), we can easily deduce the partial
derivatives of the value function (19) with respect to ¢, e and
h, respectively:

TR = ”
8”% =exp(t=T) Fle)+elZ +(t - T)%%],
37({36 =exp(t—T) -F'(e)+ (t—-T)[Z+ e%—fL
wTEh 8z (25)
thTR: elé - T)@%
arr = et —T) 5z,
so the loss function to train the ANN is defined as:
avTR 8UTR a,UTR 0.2 82’UTR
loss = — k(r*(t))? t ~h
0ss = [ — kRO 5 telt) -+ 5 e
* pT*(t) * 2
+ Ch(r* (1) + ——5—— — U()r* (1))
(r*(t)) togs (11 2200 (t)r ()]
' (26)

TABLE 1
PARAMETERS OF SIMULATION
Parameter Value
Noise Spectral Density -174 dBm/Hz

Path Loss Exponent « 4
normalized maximum offloading rate 0.7
Reward steepness coefficient & 1
Penalty value coefficient ¢ 10
Penalty steepness coefficient e 2
Energy consumption coefficient &k 1
Energy price ¢ 15
Bandwidth price p 1

V. SIMULATION

In this section, we present the simulation results of the
proposed ANN, the dimension of the state (dim) is 10, and the
number of neurons in the hidden layer (y) is 1500, the ANN
is trained 500 steps with the learning rate set to 0.01. FDM is
presented for comparison, whose convergence threshold is set
to 5 x 1074, The other simulation parameters and their values
are listed in Table I

A. Validation of the effectiveness of the proposed ANN

In this subsection, we present the training process of the
proposed ANN, and results of value function solved by ANN
and FDM are compared to validate the effectiveness and validity
of the proposed ANN.

Fig. 2 (a) depicts the loss during training, we can observe
that, with trial solution adopted, the loss converges quickly and
drops to near 0 after about 300 training steps, which means that
the network could be trained efficiently for fitting; Fig. 2 (b)
and (c) depict the Optimal value function solved by ANN and
FDM under a constant channel, respectively, both are very close
in shape, which means the proposed network could be trained
to solve the optimal value function effectively.

Fig. 3 compares the execution time for solving the HJB
equation of ANN (not including the training) and FDM, which
was carried on a 1.4 GHz Intel Core i5 CPU with 8GB memory.
It could be observed that the execution time of ANN is much
less than FDM, which shows an approximate linear growth trend
with the growth of dim, while with FDM, the time increases
quickly as dim increased, due to the nested loop statements. The
comparison validates that, after the training, the proposed ANN
could solve HIB more quickly, and the execution time increases
slower than FDM, as the dimension of state increases.

B. The performance of the MFG-based offloading strategy

Essentially, the strategy is a trade-off between the various
kinds of utility, since the running cost is relatively objective, we
present the impact of different penalty functions in Fig. 4, the
exponential penalty is given by (9), and the logarithmic penalty
is given as follow:

FO(E(T)) = — 2 —g. 27)

- 1 + efeEi(T)
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Fig. 3. Comparison of the execution time of ANN and FDM

It could be observed from Fig. 4 (a) that the offloading rate
increases with both time and energy domain to avoid being
punished. Contrarily, in Fig. 4 (b), the optimal offloading rate
decreases with energy at the last time slot, which could be
explained as follows: with little time available, the decreased
value of the penalty is too small to cover the energy cost,
a generic ECN will slow down the offloading rate. We can
also deduce this result from (13), the optimal offloading rate
is positively correlated to the partial derivative of the value
function with respect to the energy, which decreases in a
logarithmic penalty function.

Fig. 5 depicts the evolution of the optimal mean field dis-
tribution m* (¢, e) under a constant channel. Since there is no
need to take the derivative of the solution to the FPK equation,
we solve the FPK equation via FDM, the discrete form of (17)
under a constant channel is given as:

m(t + At,e) —m(t,e)
At (28)
r2(t,e + Ae)m(t,e + Ae) — r2(t,e)m(t, e)
Ae ’
where At = Ae = 0.1. The field is uniformly distributed at
the beginning. It could be observed that the remaining energy
decreases over time, and almost all the ECNs devote the whole
energy for offloading, only a small proportion of them get
punished for a little energy remained.
Fig. 6 (a) depicts the offloading rate with the mean field
strategy and maximum rate strategy, «(t) is given as follow:

a(t) = Afocos(fot), (29)

where A = 0.5 and fy = 4w, and the variance o is
1—12. We can observe that with the mean field strategy, the
offloading rate almost remains unchanged when the channel
gain is constant because the state is fully predictable under this
scenario; when the channel gain follows an Ornstein-Unlenbeck
process, the instantaneous offloading rate is positively correlated
to the channel gain, which affects the bandwidth cost; and with

=k
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maximum offloading strategy, the rate drops to zero quickly
because the energy is consumed rapidly. The cumulated cost of
a generic ECN is presented in Fig. 6 (b), it could be observed
that with the mean field strategy under a constant channel, the
cost increases almost linearly and achieves the minimum value,
when the channel follows an Ornstein-Unlenbeck process, the
cumulated cost is higher because of the unpredictability of the
state. With maximum strategy, an ECN is not able to exploit
the delay constraint and could not adapt to the variable channel,
which results in maximum cost.

VI. CONCLUSION

In this paper, we investigate the optimal offloading strategy
for ECNs in an ultra-dense network while taking into account
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Fig. 5. Evolution of the optimal mean field distribution m* (¢, e)

the remained energy and variable channel state, which is for-
mulated as a DSG and, transformed into an MFG to relax the
computational complexity of the Nash equilibrium. To calculate
the MFE, an ANN is designed to solve the HJB equation,
and the simulation results reveal that the proposed ANN can
solve the HIB equation efficiently, and the MFG-based strategy
achieves lower cost than maximum offloading strategy.
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