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Abstract—In ultra-dense networks, the increasing popularity
of computation intensive applications imposes challenges to the
resource-constrained smart mobile devices (SMDs), which may be
solved by offloading these computation tasks to the nearby mobile
edge computing centers. However, when massive SMDs offload
computation tasks in a dynamic wireless environment simultane-
ously, the joint optimization of their offloading decisions becomes
prohibitively complex. In this paper, we firstly model the joint
optimization problem as a multi-user non-cooperative dynamic
stochastic game, then propose a mean field game based algorithm
to solve it with a drastically reduced complexity. We derive the
two partial differential equations ruling the optimal strategies of
the mean field game, namely the Hamilton-Jacobi-Bellman and
Fokker-Planck-Kolmogorov equations, which are solved in an
iterative manner in our proposed algorithm. Numerical results
demonstrate that the proposed mean field game-based offloading
algorithm requires a lower cumulated cost than the conventional
strategies under the latency constraints of computation tasks,
with perfect prediction of future channel states. It also appears
that the performance of the mean field game-based offloading
strategy depends on the accuracy of the future channel knowledge
provided to the system, as the uncertainty may compromise its
cumulated cost performance.

Index Terms— Computation offloading, mobile edge comput-
ing, ultra-dense network, mean field game.
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I. INTRODUCTION

HE explosive growth in the number of smart mobile

devices (SMDs) accessing wireless networks is impos-
ing high traffic demands on 5G networks [2]. Meanwhile,
many emerging mobile applications like face recognition, nat-
ural language processing, virtual/augmented reality (VR/AR),
network-assisted auto-driving and drone control, are both
computation-intensive and energy-consuming, thus their per-
formance might be compromised by the limited computation
capacity and battery energy level in SMDs [3]. To address
the traffic demand issue, ultra-dense networks (UDNSs) can
be deployed with a high density of small base stations
(SBSs) or remote radio units (RRUs) sharing the same base-
band units (BBUs) pool [4]. To solve the computation capacity
and energy problem, the SMDs can offload their computation
tasks to the nearby mobile edge computing (MEC) centers
via the wireless links to their associated SBS/RRU. The MEC
centers are usually equipped with CPU and GPU pools far
more powerful than the SMDs and with fixed power supply
that makes them much less sensitive to the energy consumption
of computation tasks [5], [6]. However, when massive SMDs
offload computation tasks to a MEC center in a dynamic
wireless environment simultaneously, the joint optimization
of their offloading decisions becomes prohibitively complex.
In this paper, we investigate a dynamic computation offload-
ing strategy with distributed decisions on SMDs in a UDN
scenario.

A. Related Work and Motivation

In computation offloading, a SMD may offload a
computation-intensive task, or a portion of it, to the MEC net-
work instead of performing the task locally. In order to make
the computation offloading decision, various aspects must be
considered, e.g., the latency constraints of the computation
applications, offloading energy cost, etc. In [7], the authors
proposed partial offloading and binary offloading to achieve
energy-efficiency. In order to minimize the overall energy
consumption in a multi-task MEC system, Dai et al. [8] pro-
posed an efficient computation offloading algorithm by jointly
optimizing user association and computation offloading, where
both computation resource allocation and transmission power
allocation were considered. In ultra-dense Internet-of-Things
(IoT) networks, an iterative searching-based task offloading
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scheme was proposed by Guo et al. [9], which jointly opti-
mized task offloading, computational frequency scaling, and
transmit power allocation. The aforementioned computation
offloading schemes were obtained by solving centralized opti-
mization problems, which require global network information
at the cost of significant signaling overhead, e.g., signals to
report the channel and queuing states of all the SMDs to
the MECs. In addition, the centralized offloading optimization
problems are usually complex, and may have to be solved
using heuristic algorithms (which are sub-optimal). Moreover,
since the SMDs are likely to be owned by different individuals
with potentially different preferences of service, they may be
reluctant to follow the centralized solution that maximizes
the system performance rather than their individual utilities.
All these make the design of an efficient distributed multi-
user computation offloading mechanism attractive.

In distributed computation offloading strategies, multiple
SMDs are making offloading decisions individually while
individual competing for both radio resources and compu-
tation resources, which is often investigated with game the-
ory [10]-[12]. In [10], the authors formulated the multi-
user computation offloading problem as a potential game,
and designed a distributed computation offloading algorithm
which can achieve a Nash equilibrium in a multi-channel
wireless contention environment. The authors of [11] pro-
posed a distributed computation offloading scheme based
on Stackelberg game, where the users compete for lim-
ited computation resources on edge clouds via a pricing
approach. Cao et al. [12] formulated the multi-user com-
putation offloading problem as a non-cooperative game and
designed a machine learning-based computation offloading
algorithm. From the game theory perspective, each SMD needs
to consider all the other SMDs’ possible decisions while
making its own offloading decisions; otherwise, if too many
SMDs choose to offload with a very high rate simultaneously
(which leads to high transmission power for every SMD),
then the severe interference among SMDs will degrade their
achievable transmission rate, while the computation energy
cost and/or delay at the MEC will increase dramatically,
thus reducing the spectrum and energy efficiency. Most of
the Game theory-based mechanisms solve this problem by
letting each SMD take turns to update their decisions, where
each SMD should watch its previous SMD’s current decision,
and then make its own decision. This process will keep
repeating until a Nash equilibrium (NE) is reached. It can be
deduced that, for a distributed offloading game with N SMDs,
the convergence time will scale up as N increases, and finally
reaches infinity when NN is sufficiently large, whereas the
channel condition may change before the algorithm converges.
Such a drawback makes the traditional Game-based distributed
offloading approach practically impossible to be adopted for
UDN scenarios with a large number of SMDs.

Moreover, most existing works on computation offload-
ing considered semi-static channels only, where the channel
states, the offloading strategy and the resource allocation
stay unchanged during a computation offloading session. The
assumption of semi-static channels may limit the usefulness
of the obtained results, since the transmission of computation
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data may not always be completed within the channel coher-
ence time. Some recent works have demonstrated that future
user mobility and channel variations could be accurately
predicted [14], [15], and the wireless transmission strategies
can be adapted to the predictable channel variations based on
Dynamic Programming (DP) [16]. Furthermore, when multiple
SMDs need to dynamically optimize their decisions in compet-
ing for limited communication and/or computation resources
in distributed manner, the resulting problems become dynamic
stochastic games (DSGs) [17]-[19]. By adopting DSG in
distributed computation offloading problems, it is possible to
adjust the SMDs offloading decisions both to the fast changing
wireless environment, and to the other SMDs decisions, which
shall bring great practical value to the distributed computation
offloading study. However, a DSG with N players involves
solving IV correlated stochastic differential equations (SDEs),
when N is large (as in UDNSs), the solving process could
become prohibitive complex to implement.

To tackle the scaling problem, mean field games (MFGs)
were introduced for multi-player non-cooperative DSGs by
Lasry and Lions in [20], which simplifies the interactions
among numerous players into a two-body interaction by con-
sidering the players are equally rational. Applications of MFG
in communication networks include power control in ultra-
dense networks [21]-[23], interference management in device-
to-device (D2D) communications [24], security enhancements
in mobile ad-hoc networks [25], and computation offloading
strategies in [26]—[28]. In [21]-[24], basically the mean field
is employed to model the cumulative interference among all
users, while each user need to decide its transmission power
dynamically. A mean-field-type game was proposed in [26]
for downlink computation offloading, where the distributed
edge computing nodes decide how much they can offload from
a task aggregator. In [27] and [28], the authors investigated
the computation offloading strategy in the up-link using MFG
approach. The authors of [49] adopted MFG to solve the
resource allocation problem for uplink computation offloading
to MEC in a non-orthogonal multiple access system. However,
the work in [27], [28], [49] all formed the mean field using
uplink interferences similar to [21]-[24], and didn’t consider
the competition for computation resources at the MEC.

Inspired by the application of MFG in communication
networks, especially its great potential in reducing the com-
plexity of solving a large number of DSGs as well as the
scaling problem of traditional game-theoretical approaches,
we investigate the MFG approach for the uplink distributed
computation offloading problem in UDNs while considering
the competition for computation resources and the dynamics
of wireless channels.

B. Contribution of This Paper

In this paper, we aim at solving the dynamic uplink
computation offloading decision problem with a distributed
strategy, leading to an efficient utilization of both the SMDs’
transmission energy and the MEC’s computation resource.
We consider the UDN scenario where a large number of
SMDs are connected to a Fog-RAN, and share the computation
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resources in the MEC pool of this Fog-RAN [9], [31], [32].
Specifically, we propose an MFG-based distributed strategy
to optimize each SMD’s computation offloading decisions
to minimize its total transmission energy and computation
cost paid to the MEC jointly, where each SMD is able to
adjust the offloading rate dynamically both to the varying
channel conditions, and to the demand/competition for MEC
computation resource by other SMDs. The contributions of
this work are summarized as follows:

1) A Mean Field Game Problem Formulation for Uplink
Computation Offloading in UDNs: We formulate a cost
minimization problem for uplink computation offloading
in UDNs by adopting the MFG theory, where the number
of SMDs may grow to infinity. To the best of our
knowledge, this work is the first to apply MFG to
uplink computation offloading problems, while the only
existing work on MFG-based computation offloading
[26] studied the downlink computation offloading from
a central task aggregator to distributed MEC nodes.

2) Dynamic Uplink Computation Offloading Adapted to
Both the Time-Varying Channel Condition and the Com-
petition for MEC Computation Resource by Multiple
SMDs: 1In the formulated cost minimization problem,
the cost function combines the transmission energy of
each SMD and the computation price it has to pay to
the MEC, where the latter is designed to increase with
the normalized computation load of the MEC. Different
from most of the existing works [15], [16], [21]-[24],
[27], [28], [44] and [51] that adopted MFG to deal with
the mutual interference among co-channel transmitters
only, we apply MFG to also cope with the competition
for shared MEC computation resource among a large
number of SMDs through the design of a dynamic
computation price.

3) Distributed Mean Field Equilibrium Rate Offloading
Strategy: We derive the Hamilton-Jacobi-Bellman (HIB)
equation and the Fokker-Planck-Kolmogorov (FPK)
equation for the constructed MFG problem to achieve
the Mean Field Equilibrium, which reveals the optimal
offloading rate decisions at all time slots during the
whole offloading time period for a generic SMD, and
devise numerical approaches to solve these two cou-
pled partial differential equations (PDEs). Based on the
obtained solution, we propose a distributed mean field
equilibrium rate offloading strategy (MFEROS) that can
be implemented by each SMD to transmit more of its
task bits to the MEC when its channel condition is
better and/or the computation price is lower based on
its prediction of the channel variation and the offloading
decisions of other SMDs, while satisfying the latency
constraint.

4) The Proposed MFEROS Achieves a “Latency Gain”
and a “Future Channel Knowledge Gain” Over the
Existing Schemes: Based on extensive simulation results,
we reveal that the proposed MFEROS allows an SMD to
exploit the entire time within the latency constraint for
computation offloading by selecting the time slots when
the channel condition is good and/or few other SMDs
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Fig. 1. System model.

are offloading to offload its task bits, thus resulting in a
“latency gain” over the offloading strategies that tend to
complete offloading transmission as soon as possible.
In the meantime, the proposed MFEROS enables an
SMD to adapt its offloading transmission rate at every
time slot to the present and the predicted future link
quality, thus offering a “future channel knowledge gain”
over the offloading strategies that adopt a constant
transmission rate. The two gains lead to a much reduced
cumulated computation offloading cost for SMDs than
the exiting schemes.

The remainder of this paper is organized as follows.
In Section II, we describe the system model under investi-
gation. We construct the distributed optimization problem of
uplink computation offloading as a multi-user non-cooperative
DSG in Section III, and then transform the DSG into an
equivalent MFG in Section IV. In Section V, numerical results
are presented and discussed. Section VI concludes the paper.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a group of N SMDs in
an UDN system which consists of L RRUs, and each SMD ¢
has a computation-intensive task to be completed within time
duration 7'. Each RRU serves at most X SMDs, and N <
L x X. Similar to the system architecture in [9], [31], [32],
these RRUs connect to BBU pool through radio-over-fiber
(RoF) links, and a MEC resource pool is co-located with
the BBU pool. SMD i (i € {1,...,N}) may offload its
computation tasks to this MEC pool through its nearest RRU,
and the network operator charges the SMD for the offered
computation offloading service. Thus, each SMD attempts to
optimize its offloading decisions to minimize its total cost,
including both transmission energy and computation price,
within the time constraint 7'. It is worth noting that the RoF
backhaul links might still be a bottleneck to a UDN [33], [34].
As the impact of non-ideal backhaul on UDN is outside the
scope of this paper, for analytical tractability, we assume that
the bandwidth of the RoF backhaul link for each RRU is
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sufficiently large, and thus the transmission delay between the
BBU pool and the RRU can be neglected.

A. Transmission Model

Let h;(t) denote the channel gain between SMD i and its
nearest RRU at time ¢t. We model the channel dynamics as an
1td6 process [37], as in [21], [40], [42], i.e.,

dh;(t) = ay (t, hi(t)) dt + o (£)dW (t). (1)

where «; (t,h;(t)) is a deterministic smooth function,
oi(t)dW (t) is a Wiener processes following N (0, o;(¢)dt),
and the initial channel realization h;(0) is known. The deter-
ministic function «; (¢, h;(t)) models the path loss evolution
over time due to user mobility, whereas the stochastic part
0;(t)dW (t) accounts for unpredictable channel variations, due
to e.g., fast fading, or prediction uncertainty on the mobility
of users.

The computation task of SMD 1 is to be served upon arrival
at t = 0, and consists of Q;(0) = D > 0 bits of data to be
offloaded over the time duration 7°. Similar to [4], we assume
the computation task can be split randomly, and different
parts of it can be processed in parallel. Let Q;(t) denote
the remaining data size which still needs to be offloaded at
time ¢, and each SMD should decide its instantaneous offload-
ing transmission rate 7;(t). More specifically, the remaining
data size decreases following the transmitted (offloaded) data
volume, i.e.,

dQ; (t) = —r; (t) dt. (2)

The computation task offloading is successful if all the data
has been offloaded in time, i.e.,

Qi(T) =0, 3)

where 7' is the offloading deadline required by the application-
level quality of service (QoS). We assume that each time
duration 7" is a resource allocation/scheduling period for
computation offloading in a synchronized manner, while the
asynchronous computation offloading scenarios will be inves-
tigated in our future work.

We assume that the SMDs access the same RRU via
orthogonal frequency division multiple access (OFDMA), and
fractional frequency reuse is employed to avoid the uplink
interference among neighboring RRUs [29], thus the uplink
intra-cell and inter-cell interference is mitigated in the inves-
tigated UDN system. However, it will be considered in our
future work. Then, the achievable offloading transmission rate
can be calculated as:

1) W

r; (t) = Blog, (1 4 B 5
O—n

where B stands for the channel bandwidth allocated to each
SMD, p; (t) is the transmission power of SMD i at time ¢,
and o2 denotes the power of the additive white Gaussian
noise (AWGN). For practical reasons, we assume that the
transmission power is bounded, i.e., p;(t) € [0,p"®*], and
therefore, the offloading rate is bounded as well, i.e.,

) <00 [, (14 E0)] g

n
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Given the instantaneous offloading decision 7;(¢) and based
on (4), we define the transmission cost of SMD i at t as:
W4y = pe (1) = 1 (272 _ 1) _In_

PO =mi@=n(2" -1)%5©
where 7 is the coefficient to convert the value of power to
monetary value. Therefore, the power cost expressed in Watts
can be converted into the cost expressed in monetary units.

B. Computation Model

When the offloading task of SMD ¢ is transmitted to
the associated RRU, it can be assigned to any computation
resource within the MEC pool thanks to the computation
virtualization techniques [30]. Considering that the MEC pool
has sufficient processing power [31], [32], we assume that
each part of the offloaded tasks can be processed completely
right after it is received. In the MEC pool, each task of an
SMD can be assigned to a virtual machine with a specific
CPU processing frequency by using computation virtualization
techniques. However, due to the large number of SMDs in
an UDN, it is impossible to assign a physical CPU or CPU
processing core to each SMD’s task, thus they will share
the physical CPUs of the MEC pool. Although contemporary
CPUs can adapt their working frequency to the computation
load, the power (energy) cost of each physical CPU will
increase twice as fast as its working frequency rises [35].
Hence, when multiple SMDs’ tasks are sharing the same
physical CPU, their accumulated offloading data volume will
decide the working frequency of the serving CPU at the MEC,
which incurs a quadratic cost of the total load of this CPU [26].
By considering the above cost model, and inspired by the
auction model in [36], we define the computation price for
each SMD 1 according to the MEC pool’s normalized load,
such as,

A, N=1

Lilt) = : f: ri(t), N>2,

7
N ™
Jj=1#1

N -1

where A is the basic price for the MEC pool to process per
unit data, and £ is employed to convert the average load to
monetary value. Then, the computation cost of SMD i at ¢
can be expressed as:

C (1) =0, (t)ri (1) ®)

Based on this computation cost model, each SMD needs
to consider all the other SMDs’ possible decisions while
making its own offloading decision; otherwise, if too many
SMDs choose to offload with a very high rate simultaneously,
the computation energy cost at the MEC will increase dramat-
ically, resulting in a very low cost efficiency. That is, the price
setting for N > 2 intends to prevent the SMDs from offloading
with a very high rate simultaneously, thus the MEC’s load
will be distributed more evenly over time, which is more cost
efficient for the SMDs and more energy efficient for the MEC.

Hence, the total cost for SMD ¢ at ¢ is given by

cty=cPy+c® ). )
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III. FORMULATION OF MULTI-PLAYER
DYNAMIC STOCHASTIC GAME

In the investigated UDN system, SMD i (i € {1,...,N})
needs to decide the optimal instantaneous offloading strategy
rf(t), in a bounded action set [0,7"%"], which allows it to
finish offloading its overall task data of size );(0) before the
deadline T' (a.k.a., the delay constraint), at a minimal cost.
The optimal offloading decision 7} (¢) should be based on the
present channel realizations, the remaining data size, and the
prediction («;(t), 0;(t)) of future channel states (For simplic-
ity, we assume «;(t) = a(t),o;(t) = op, Vi € {1,...,N}.).
Without loss of generality, the computation offloading opti-
mization problem for each SMD can be formulated as a
dynamic stochastic game (DSG) in continuous time as follow:

T
/ Ci(t)dt
0
s.t.

Cl: dhi(t) = a; (£, hi(t)) dt + s (£)dW (1),

. _ .
r; = argminE ,
ry

C2: dQy(t) = —ri (1) dt,
C4: QiT) =o. (10)

in which C1, C2 are the continuous time equivalent of Eq.(1)
and (3), which describe the evolution of the channel state and
the remaining data size of SMD 4, and C3, C4 are the initial
and the required final states of the data queue at each SMD,
respectively. It is assumed that the initial channel state h;(0)
and the stochastic differential equations (SDE) parameters
(a(t),0p) are known at t = 0. Each SMD 4 attempts to
solve its own version of the optimization problem (10) at
the same time, leading to an N-user non-cooperative DSG.
It is worth noting that the objective function in (10) and the
constraints are smooth functions and first-order SDEs. This is
later exploited to simplify the analysis of the DSG.

According to the dynamic programming theory [17],
the optimal solution of (10) for the entire duration [0, 7]
can be derived by constructing a running cost function (a.k.a,
the Bellman function) over time period [¢, 7], and then solved
in a time-reversed order. Therefore, we define the running cost
for SMD i (i € {1,...,N}) as follows:

i (£ (1)) = minE
T4 t

| cwmasr@m). ay

where

Si (t) = [Qi (t), hi ()]

is the state of SMD ¢ at current time ¢, which consists of
the remaining data size Q; (¢) and the channel state h;(t).
It should be noted that in (11), u € [t, T] denotes the upcoming
time from current time ¢ to the end of this task. The Bellman
function models the future cost on all upcoming time for SMD
i, at time ¢ and state S;(t). The offloading strategy to be used
for all the SMDs are r = (1] (u));cn yep,r)- I (Qi (1)) is a
penalty function to relax the offloading completion constraint
C4. Here, F(Q;(T)) = 0, if Q;(T) = 0. If Q,(T) > 0,

12)
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F(Qi(T)) takes a sufficiently large positive value to punish
the SMD for not fulfilling the offloading task in time.
Definition 1: A computation offloading strategy R* (t) =
(ri (t),...,ry (t)) is a Nash equilibrium for the DSG in (10)
if and only if 7 (¢) is the optimal control to the problem, i.e.,

*
T

/t Ci (uyri (u),r*,) dut-F (Q: (7))
(13)

(t)=argmin E
i (@)

where r*, denotes the offloading strategies of all the SMDs
except for SMD :. Under the Nash equilibrium configuration,
no SMD can have a lower cost by unilaterally deviating from
its current offloading control policy.

According to [38], [39], a sufficient condition for the
existence of a Nash equilibrium is the existence of N
inter-dependent solutions v;(¢, S) to the N Hamilton-Jacobi-
Bellman (HJB) equations related to the optimization problem
(10), i.e.,

min|Cy (£) = i (£) i (¢ S:(#)) + o (2) On,vi (8, Si(t)

1 *
+ 50?8;,,ihivi (t, Si(t)] + Opw; (t,S; (t)) = 0. (14)
Proof: As wv; (t,S; (t)) is the value function of cost
C; (t) at the state S; (t), according to Bellman’s principle of
optimality, increasing time ¢ to ¢ + dt, leads to

v; (t,9: (t))

= minE

t+dt
iy / Cy () du+v; (t+dt, S (t+dt)) | . (15)
ri(t t

By adopting Taylor’s expansion of v; (t + dt), we obtain

(Y (t + dt, Sz' (t + dt))
= v; (¢,59; (¢))+[0:v; (t, S; (£) H0:S;i (t) - Vo, (¢, S5 (t))] dt
+o(dt),. (16)

in which J,v; is the first-order partial differential of v; with
respect to t, Vv, is the gradient of v; with respect to the
state variables S;(t), and o (dt) denotes the terms of order
higher than one in the Taylor expansion. By substituting (16)
into (15), canceling v; (t,S; (t)) on both sides, dividing both
sides by dt, and taking the limit when dt approaches zero, we
find that o (dt) is negligible compared to other items, which
leads to

min [C; () + 8,5 (t) - Vv; (¢, (¢))]

;i (t

+ 8{()1' (f,, Sz' (t)) =0. (17)
By substituting (12) into (17), we obtain the HIB
equation (14). [ |
Theorem 1: There exists a Nash equilibrium for the multi-

player non-cooperative dynamic stochastic game in (10).
Proof: The existence of a solution to the HIB equation
ensures the existence of the Nash equilibrium for the game.
It is known that there exists a solution to the HIB equation if
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the Hamiltonian is smooth [40]. Based on the HIB equation,
the Hamiltonian is defined as

H(ri(t),5i (), Vi (¢, 5; ()))

= in [Cy (£, 51 (1)) + 0:Si (1) - Vo (1,5 (1)) (18)

The derivatives of all orders exist for the Hamiltonian due
to the continuity of the defined cost function C; (¢), a;(t)
and o,(t), as well as the derivatives of the Hamiltonian
with respect to r;(t). Due to the existence of the derivatives,
the Hamiltonian is smooth. This concludes the proof. |

Theorem 2: Since the optimal running cost trajectory
v¥(t,S;(t)) is the unique solution to the HIB equation (14),
the optimal offloading strategy for SMD i can be obtained as:

Bh; (t)
no2 In?2

ri(t,S) = Blog, { (0g,v; (t,S) — ¥, ()] . (19)

Proof: Based on (14), the Hamiltonian can be rewritten as
H (ri (t), 5 (t) , Vi (8, (1))

2
. ri(t) no.
= min (25 —1) U ()i (¢
min | 2o w00
—Ti (t) 8Q7‘,UZ (t7 Si(t)) +ta (t) 8}1/7:1];K (t7 St(t))
1 *

+ ottt (1.5:0)]

Then, differentiating the infimum term in (20) with respect to
r;(t) and equating it to zero lead to:

(20)

021
n2_riw
N0y L

2 U, (t) — 0g,v; (t,S) = 0. 21

hz(t)B + z() szz(v ) 2D
Therefore, by isolating 7;(¢) in (21), we can obtain the optimal
r¥(t,S) in (19). |

However, the computation price W;(¢) in solution (18),
as defined by (7), is decided by the collective decisions of all
the SMDs, thus to find a Nash equilibrium for the /N-user non-
cooperative DSG requires to solve N coupled HIB equations
(14) for each SMD. Even worse, to implement this approach
in practice will need the IV players to exchange extensive sig-
naling messages, which becomes prohibitively complex when
N grows large. To address this scaling challenge, we propose
to transform the IN-user non-cooperative DSG into a MFG
which is more tractable.

IV. MEAN FIELD GAME APPROACH

As introduced in [41], [42], the MFGs can be seen as
the extension of multi-user non-cooperative DSGs when the
number of users is large enough to be considered infinite.
In this section, we reformulate the optimization problem (10)
with MFG, derive its mean field equilibrium with HJB and
FPK equations, and detail the iterative algorithm employed to
solve these PDEs, based on a finite difference method.

A. Mean Field Game Assumptions, Reformulations
and Approximations
According to the mean field theory [20], a MFG model

include one generic player, taking rational actions, and a mean
field, representing the collective actions of all other players.
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When the game starts, the generic player will create a decision
set for all possible states to optimize its performance target
(or utility), and all the players will share this decision set since
they are symmetrical in possible states and equally rational.
Then the mean field will create the cumulative impact of all
the rest players to the generic player, based on the probability
density function (PDF) of their states and the shared decision
set. The generic player will adjust its decision set according to
the feedback of the mean field, and the mean field will create
new impact according to the updated decision set again. This
iterative process will continue until a NE is achieved. It is
obvious that the converge time of MFG, as a 2-body game,
will not increase with the number of players, thus the scaling
problem of DSGs can be solved.

To formulate a MFG problem, the following four hypotheses
(H1-H4) must be considered for the investigated computation
offloading game:

o HI- Rational Expectations and Behaviors of the Players:
The players’ decisions are rational and based on the cost
functions, which means that the players shall optimize
their present offloading strategy according to both the
current states, the prediction of future channel evolution,
and the expected offloading decisions of all the other
players, to minimize their cost functions.

o H?2 - Interchangeability of the States Among the Players:
Any permutation of two players does not change the
global outcome of the game. In addition, two players
sharing the identical state have exactly the same optimal
offloading decision. Therefore, the index 4 of state S;(t)
can be removed, and a unique MFG-based policy r* (¢, S)
can be defined. This policy applies to every player and
only depends on the state (¢,5(t)) that each player
experiences. This greatly simplifies the game, since only
one set of optimal offloading strategies need to be adopted
by every player in any state, instead of N individual
strategies.

e H3 - The Existence of a Continuum of the Players:
As the number of players is large enough to be considered
infinite, the large population of players can then be
modeled as a continuum of players.

o H4 - Social Interaction Between Players Through the
Mean Field: Each player interacts with the mean field
instead of interacting with all the other players separately.
From a single player’s point of view, the interaction with
the N — 1 other players does not consist of one-to-
one interactions, instead the player is affected by a joint
response of the N — 1 other players altogether, in the
form of a dynamic computation price for each player.

Based on the hypotheses H1-H4, the mean field equivalent
for the investigated optimization problem (10) can be defined
in Definition 2 as below:

Definition 2: Given the state space S(t) = [Q(¢), h(t)] (H2),
the mean field is a statistical distribution of this state space at
time ¢, and the probability density of users in a specific state
is defined as

N
1
m(t,S):A;iinooM(t,S):]\}EIIOONZH&(QZS, (22)
=1
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where M (t,S) denotes the proportion of SMDs in state S at
time t € 7, and 1 is the indicator function which returns 1 if
the given condition is satisfied, and zero otherwise. When the
number of SMDs, N, goes to infinity, this proportion M (¢, .S)
converges to a mean field probability density function (PDF)
m(t,S) (as indicated in H3), which characterizes the state
evolution of the SMDs over time. As m(t, S) is a continuum

PDF, it satisfies
// mi(t, S)dhdQ — 1.
hJQ

Next, we need to redefine the computation price term W (¢)
using the MFG-based offloading policy 7*(¢, S) and the mean
field PDF m(t,.S), and prove that ¥ (¢) converges to a mean
field price when the number of SMDs N goes to infinity.

The original price term ¥, (¢) is defined in (7) as a weighted
sum of all the other SMDs’ offloading strategies. Based on
M (t, S), the optimal offloading strategy r*(¢, S), and S(t) =
(Q(t), h(t)), (7) can be rewritten as

(23)

U, (1) = A
1

+f {%/}ILM(L S)T* (t,S)dth_N_ 1” (t’ S):|
(24)

The mean field price term W (¢) is then obtained from W; (),
when N tends to infinity, i.e.,

()= lim W (t)= lim A

+E[%/}L/QM(LS)7** (t,S)dth—Nl_lri (t,S)}

(25)

In (25), when N — oo, i — 1; lim 2r(t,5) =0
N

since r;(t, S) is bounded as given in (5). Then, the mean field
price can be approximated by:

U(t)~ A+ & (/}L/Qm(t,S)r*(t, S)dth) . 6)

B. Mean Field Game Optimization Problem

We have applied mean field approximation to transform the
N-body problem in (10) into an equivalent MFG, which is a
2-body problem between a generic SMD and the mean field.

(1) First Body - Generic SMD: Assuming that all other
players’ strategies are fixed, one player in any state can
compute its optimal offloading strategy from the HIB equation.
It rewrites as

min[C(t,5) = r(t, §)0qu* (¢, 5) + o (1) Du* (1, )

1
+ §a§ahh,v*(t, S) 4 Ow*(t,S) =0 (27)

in MFG based on (14). Then the best offloading decision
r*(t,S) in (19) can be expressed as

Bh(t)

(¢ = Bl
r (ﬂS) 0go n0%1n2

(Ogu™(t,5) =W ()] . (28)
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by using the mean field price ¥(¢), in response to a given mean
field m (¢, .5). The optimal running cost trajectory v*(t,.S) is
solved with the HIB equation (27) by backward reasoning.
Starting from the final boundary condition v*(7,S5(T)) =
F(Q(T)) to derive v*(T — 1,5),v*(T — 2,5),...,v*(0,5),
respectively.

(2) Second Body - Mean Field: The evolution of the mean
field m(t,S) can be described using the FPK equation [20],
when all users in the system implement the mean field strategy
r*(t,S). Given the offloading strategy r*(¢,.S), the evolution
of the mean field density m(t,S) can be obtained by solving
the FPK equation (29) in forward direction, starting from the
initial boundary condition m(0, S).

Bim(t, 5) + 0n (a () m(t, S))
— 90 (r(t, S)m(t, S)) — %Uﬁ@;,,hm(t, S)=0 (29)

Proof: Let y(S) be a smooth and compactly supported
function, then the integral [ m(t,S)y(S)dS can be seen as
the continuum limit of the sum 4 Efil y(S:), ie.,

N

1
uﬂWﬂwﬁwzﬁgkwww (30)
By differentiating both sides of (30) with respect to ¢ and
applying the chain rule, we have

aym(t, S)y(S)dS
~ % ZL [0:5:(t)Vy (Si) + 07Si (1) Ay (Si)],  (31)

where Vy (S;) and Ay (.S;) are the gradient and Laplacian of
the function y along .5;, respectively. When N — oo, (31)
converts to

om(t, S)y(S)dS
:/[&gS(t)Vy(S)+8§S(t)Ay(S)] m(t, S)dS. (32)

Applying integration by parts on (32) leads to

[0im(t, S) + 8,SVm(t, S) — O2SAm(t, S)] y(S)dS =0,
(33)

which is valid for any smooth function. Letting y(S) = 1,
we have

om(t, S) + 0;S(t)Vm(t,S) — 02S(t)Am(t,S) =0 (34)

By substituting the state S(¢) = [Q(t), h(t)] into (34), the FPK
equation (29) is obtained. |

To this end, we have transformed the N-body DSG into
a 2-body MFG. The two bodies here consist of our generic
SMD, and a mean field continuum including the large mass of
SMDs competing against the generic SMD. Fig. 2 provides a
graphical representation of the two body interaction, in which
the core idea is that the HIB equation allows to compute the
optimal offloading strategies to be used for any SMD in any
states (channel, remaining task data, etc), in response to a
given mean field price, whereas the FPK allows to define
the mean field price response, if all SMDs in the system
implement the MFG offloading strategy.
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Fig. 2. A graphical explanation of how the two body MFG works for N-body
computation offloading decisions.

Discussion:

1) Efficiency of MFG approach: Mean field equilibrium
(MFE) can be seen as equivalent to the Nash equilibrium
for DSGs. For MFGs, the MFE represents the stable
combination of both the value function v(t,S) and the
mean field m(¢, S). At any time ¢ and state S, the value
function v(¢, S) and the mean field m(t, S) interact with
each other, where the optimal running cost trajectory
v*(t,.S) is the solution to the HIB equation in (27)
and m(t,S) is the solution of the FPK equation (29).
v*(t,S) determines r*(¢,.S) in (28), then affects the
evolution of the mean field via (29); m(¢,.S) determines
the mean field price ¢ in (26), which affects v*(t,.S)
through (27). Therefore, the optimal offloading strategy
can be obtained by solving the two coupled forward-
backward PDEs iteratively. It is guaranteed that the
iterative algorithm will converge and lead to the optimal
mean field strategies, as all the involved functions are
smooth [44]. Also, it will converge fast [45], as the
iterative algorithm includes only two bodies, instead of
N bodies if without the mean field game.

2) How large should N be to adopt MFG: It is assumed that
the number of SMDs is very large to meet H3 (The exis-
tence of a continuum of the players) to apply the
mean field theory. However, it has been verified by the
simulations in [15] that even when N is as small as
100, the mean field model is still accurate enough to
approximate the interactions among a group of players,
which is easy to be satisfied in the UDN scenario.

C. Proposed Algorithm With Finite Difference Method

There is no closed-form expressions for the exact solutions
of (19) and (29), thus we adopt finite difference methods
(FDM) [43], [46] to numerically solve the coupled HIB and
FPK equations. With FDM, the investigated offloading time
interval [0, 7], the remaining task data space [0, D] and the
channel state [Mnin, Amaz] are discretized with the steps of
At,AQ and Ah, respectively. Let n,q,l be the index of
discrete time, remaining data size, and channel state, thus
t = nAt,Q = gAQ and h = [Ah. In this setting, the finite
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Algorithm 1 The Iterative Method for Computing the MFE
Rate Offloading Strategy

1: Initialize: m(0)s vz‘o), rZ‘O), \Il(o), k=0, kmas €.

2: while & < k0, do

3: k=k+1

4:  Using rfkq)» solve the HIB equation for v(*k) with (39).
5:  Using vz‘k) and W;_1), update r’("k,) with (28).

f t'zk) (’I’L, q, Z) -

reak;
end if
Using rzk), solve the FPK equation for m’(*k) with (40).
10:  Using my) and rzk), update W) with (26).
11: end while

rzkﬂ)(naq’l)} < e then

R BN

difference expressions of the first and second order derivatives
of the continuous MFG with respect to time and state space
can be written as:

ov* (t,Q,h) - v* (n+1,q,1) —v* (n,q,1) (35)
ov* (tatQ h)  v*(n,q,l) Avi (n,g—1 l)7

0q ~ Agq ’ (36)

ov* (t,Q, h) - v* (n,q,l+1) —v* (n,q,1) 37)
oh Ah ’

0%v* t,Q, h) v (n,q,l+1)—2v* (n,q,)+v* (n,q,l — 1)
oh? - Ah? '
(38)

By substituting (35) - (38) into (27), the HIB equation can
be rewritten in a backward discrete form as

r(n)At) o
Aq
oP At

Aq Ah
o a(n) | o
ozt (el =1+ At( AL T 2AR?
xv*(n,q,l + 1) + AtC(n)]. (39)

When n = T,v*(n+ 1,¢,1) = F(Q(T)). Similarly, the FPK
equation can be rewritten as

x[v*(n—l—l,q,l)—i—( - 1,0)

+

m(n+1,q,1) = E[m(n q+1,1

+m(n,q—1,1)+m(n q,1+1)

+m(n,q,l—1)] - [ (n,q,1+1)

x m(n, q,l—i—l)—a(n q, -1)
xm(n,q,l—1)] + 2AQ[ r(n,q+1,1)
xm(n,q+1,1) —r(n,qg — 1,1)

m(n,q—1,1)] + 103(5)
x m(n,q,l+1) —2m(n,q,1)
+m(n,q,l —1)]. (40)

To this end, the iterative method to obtain the MFE rate
offloading strategy (MFEROS) is described in Algorithm 1.
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In Algorithm 1, Y;, denotes the value of Y = {m,v,r*, ¥}
at iteration k; € is the convergence threshold, which is a
relatively small value; k4, 1S the maximum allowed number
of iterations. At the beginning of the algorithm, vE"O), r’("o) and
W gy are initialized as zeros, and the evolution density m )
is given as a specific known distribution. Then, the algorithm
solves (39) and (40) iteratively and updates the parameters in
Y, until r* converges or k,q. is reached. Since the initial
condition of the system is given in Algorithm 1, then the
proposed MFEROS scheme will be able to obtain the optimal
decision set for any SMD in any state (i.e., time, channel
condition, remaining data size). Also, thanks to the MFG
framework, Algorithm 1 can be computed by any SMD in
a distributed way.

Besides, a penalty function F(Q(7")) must be defined for
the MFEROS, which should return zero when Q(7") = 0, and
a large value when Q(T") > 0. We select a parametric logistic
function as penalty, i.e.,

F(Q(T)) Ty

=TT o am “D

V. NUMERICAL RESULTS

In this section, the performance of the proposed MFE rate
offloading strategy are numerically evaluated in comparison
with some other offloading strategies as follows:

e SI - MFE Rate Offloading Strategy (MFEROS): the
offloading strategy is obtained by computing the mean
field equilibrium in Algorithm 1.

o S2 - Maximal Rate Offloading Strategy (MROS): the
SMDs offload tasks with the maximum transmit rate (or
offload tasks at the maximal power), until the offloading
is complete.

e S3 - Constant Rate Offloading Strategy (CROS): the
SMDs offload at a constant data rate to fully utilize the
whole available time duration, no matter what the channel
gain and computation price is [16].

o S4 - Time-Domain Water-Filling Offloading Strategy
(TWFOS): S4 has the same cost function as S1, but it
is given perfect knowledge about the channels’ evolution
during the whole offloading duration, thus time-domain
water-filling [21] is adopted to decide the optimal instan-
taneous offloading rate, while the dynamic computation
price for each SMD is solved via a traditional iterative
way. Therefore, this strategy has huge computational
complexity, making it impossible to be adopted in prac-
tice when the number of SMDs grows large. Nevertheless,
we present it as a benchmark to show the optimal perfor-
mance bound under perfect future channel information.

In practical wireless communication systems, transmissions

are fulfilled in discrete time slots. Therefore, following the
optimization target in (10), we define the performance metric
in simulation as the cumulated cost averaged among all SMDs
in discrete form as :

1
== Cilb), 42)

i=1 t=1
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Fig. 3. The penalty function versus Q(T") for 3 different pairs of ¢ and p.

TABLE I
SIMULATION PARAMETERS

Number of time slots 20

Time slot duration At 0.5ms

Initial data size D 2.5 x 10%bits
Data grid resolution AQ 5 x 103bits
Channel grid resolution Ah | 3 x 10~%
Channel bandwidth B 5MHz
Maximal power p"*** 23dBm
Noise power o2 —104dBm
Basic price A 108

T
in which > C;(t) is the discrete form of the target cost

function int _(iO).

Fig. 3 illustrates the behavior of the penalty function defined
in Eq. (41) under different parameters settings, where parame-
ter ¢ and p respectively define the maximum value and the
steepness of the curve. We observe that parameter ¢ defines the
maximal penalty value the function takes, whereas parameter
p defines the steepness of the curve.

In the following simulations, ¢ = 5000, p = 100 and other
major simulation parameters are listed in Table I.

A. Semi-Static Channels

In this subsection, we consider a particular case where the
channels are semi-static during the whole offloading duration,
ie., a and o, in (1) are set to zero. As a consequence,
the state S(¢) consists only of the remaining packet size to
be transmitted, Q(t).

Fig. 4 shows the evolution of the optimal offloading strategy
r*(t, Q) for each SMD with respect to time and the remaining
data size. When the time state is fixed, it can be observed that
the value of r*(¢,Q) increases when the remaining data @
becomes large. However, the value of 7*(¢, Q) also increases
over time when the data state is fixed. The reason is, when
larger remaining data volume need to be offloaded, or fewer
time slots are left for transmission, therefore forcing the
system to transmit at higher rates during the remaining
time slots, as to complete offloading process before the
deadline.
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Fig. 5. Evolution of the mean field m(¢, Q) distribution.

Fig. 5 illustrates the evolution of the mean field distribution
m(t, Q) when the channel gain is constant. Note that m(¢, Q)
indicates the density of SMDs in state (¢,Q). The initial
distribution of the mean field m(0, Q) follows a normal dis-
tribution AV(8 x 105,2.5 x 10'!). In this data size distribution,
the expected remaining data volume decreases with time which
corresponds to the trajectory of the optimal offloading rate
in Fig. 4. Since the channel gain is constant, it can be observed
that the trajectory of the peak of density m(¢, Q) is almost a
straight line. This follows from the optimal MFEROS strategy
being constant over time, as the channels remain constant
over time as well, as shown in Fig. 6 and Fig. 7. At the
deadline, almost every SMD has completed its offloading as
requested, while a little proportion of them have very small
data volume left, and accept the penalty F(Q(T)) for this small
amount of remaining data to be transmitted. This phenomenon
is unfortunately unavoidable, but its effect is negligible and
thus considered acceptable.

In Fig. 6 and Fig. 7, we present the cumulated cost and
evolution of remaining data size for a generic SMD for
offloading strategies S1, S2 and S3, respectively. Under static
channel gain, strategy S4 employs a constant offloading rate
(which can be proven easily with KKT conditions), thus it is
equivalent to strategy S3. This is the reason why we do not
present the results of strategy S4 in this subsection.
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Fig. 7. The remaining data size Q(t¢) of an SMD versus time slot (¢) under
3 offloading strategies.

In Fig. 6, it can be observed that the cumulated cost of
strategy S1 and strategy S3 are closely equivalent. This demon-
strates that strategy S1 can be used to closely approximate
the optimal strategy S3. Due to the full power transmitting
and the large computation price, compared with strategy S1,
the strategy S2 has highest cumulated cost.

In Fig. 7, it appears that the remaining data size evolution
of strategy S1 and strategy S3 are almost overlap with each
other. As strategy S3 is known to be the optimal offloading
strategy, it means that the proposed strategy S1 is able to
approach notably the optimal offloading strategy. At the same
time, we can observe that the strategy S1 offloads the same
amount of data on every single time slot, and so dose the
optimal offloading strategy S3. On the contrary, in order to
avoid the penalty at the last time slot, the strategy S2 offloads
the data as soon as possible. While the applications inves-
tigated in this work require to be completed before a given
deadline with the minimum possible energy consumption and
computation cost, S2 allows for an early completion of the
data offloading as revealed in Fig. 7, which does not fully
exploit the available time duration for offloading and results
in the highest cumulated cost as shown in Fig. 6.

B. Time-Varying Channels

In this subsection, we investigate the computation offloading
performance under time-varying channels with no uncertainty,
iie. o, = 0, meaning that the channels are fully pre-
dictable. For demonstration purposes, the channel variation is
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Fig. 8. The instantaneous offloading rate for a generic SMD versus time slot
(t) under different offloading strategies.

modeled as

h(t) = h(0) + Asin (fot), 43)

where h(0) = 2 x 1072, fo = 0.4 and A = 1073, In this
particular case, «/(t) in (1) can be described as

a(t) = Afocos (fot).

Fig. 8 illustrates the instantaneous offloading rate decisions
for a generic SMD, under different strategies. As shown
in Fig. 8(a), the full power strategy S2 completes the trans-
mission notably in advance, using a high offloading rate. Once
completed, it simply stops offloading and becomes dormant.
Therefore, it is unable to exploit the latency constraint effi-
ciently, which is given in (3), nor is it able to exploit any
available knowledge about future channels. For readability,
we present a zoomed-in version of Fig. 8(a) in Fig. 8(b),
with the strategies S1, S3 and S4 only. In Fig. 8(b), although
S3 can utilize all the time slots, due to its constant offloading
rate, it can not adapt to the varied channel states and the
dynamic computation price evolution. Contrarily, the proposed
MEFE offloading strategy S1 can not only exploit the latency
constraint, but also adapt to the channel variations, therefore
closely approaching the optimal performance of strategy S4.

Fig. 9 presents how the cumulated cost evolves with time.
At the last time slot, it can be observed that the proposed
strategy S1 has minimal cumulated cost, which is overlapping
with the optimal strategy S4. This means that S1 nicely
approximates the optimal strategy S4. Due to the full power
transmission policy and the high computation price at the MEC

(44)
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Fig. 9. The cumulated cost versus time slot (t) under 4 offloading strategies.

pool, the strategy S2 has maximal cumulated cost. For S3, each
SMD’s transmission rate is evenly allocated to all time slots,
thus their transmission power cost and computation cost are
constant at each time slot (since the computation load at MEC
is constant, the computation price is also constant according
to (7)), and the resulted cumulated cost is much lower than
S2 but still higher than S1/S4. The reason that S1 can signifi-
cantly reduce the cumulated cost is as follow. In the considered
dynamic computation offloading scenario, the combined SMD
transmission energy cost and MEC computation cost become
high when the wireless channel condition is poor and/or many
SMDs are offloading simultaneously. In order to minimize the
cost function while meeting the given deadline, the proposed
S1 allows an SMD to transmit more of its task bits to the MEC
when its channel condition is better and/or the computation
price is lower, and transmit less when its channel condition
is worse and/or the computation price is higher, based on its
prediction of the channel variation and the offloading decisions
of other SMDs.

From Fig. 8 and Fig. 9, we can summarize that the perfor-
mance gains of S1 over S2 and S3 are twofold:

First, SI Offers a “Latency Gain” (as Defined in [21])
Over §2: This gain follows from the fact that S1 allows an
SMD to exploit the time periods when the channel condition is
good and/or few other SMDs are offloading during the entire
time within the latency constraint for computation offloading,
whereas S2 attempts to complete the transmission as soon
as possible without considering the varying channel condi-
tion or other SMDs’ offloading decisions, which increases the
transmission cost and computational cost, since the computa-
tional price increases for a high instantaneous offloading rate.

Second, S1 Offers a “Future Channel Knowledge Gain”
Over S3: S1 enables a SMD to adapt the offloading rate within
every time slot to the present and the predicted future link
quality, whereas S3 adopts a constant transmission rate for
offloading. Thus, S1 achieves a gain over S3 by exploiting the
predicted knowledge about the future transmission context.

C. Stochastic Channels

As introduced in (1), the random part of channels is modeled
as independent Wiener processes with variance o7. In this sub-
section, we investigate how the channel uncertainty parameter
op affects the performance of the proposed strategy S1 by
considering the following scenarios:
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Fig. 10. Channel evolution with different levels of stochasticity.

o Low Uncertainty (LU): o, = 0.1;
o Mid Uncertainty (MU): o, = 1,
o High Uncertainty (HU): o, = 10;

If we use 0,At/hy to measure the channel randomness,
then LU, MU and HU correspond to o, At/hg = 2.5%, 25%
and 250%, respectively. Fig. 10 presents the channel evolution
with different levels of stochasticity, in which the green curve
stands for No uncertainty (NU): o, = 0, where the system has
perfect knowledge about the channel evolution. As expected,
the higher the uncertainty parameter oy, the more the channel
realization deviates from the exact trajectory (no uncertainty
scenario), and the more unpredictable the future link quality
becomes. In particular, for high values of o3, the prediction
can become very uncertain and the trajectory for the future
channels can become highly unpredictable.

We compare the instantaneous offloading rate for a generic
SMD with S1, S2 and S3 in Fig. 11, to reveal the impact of
channel uncertainty (Since S4 has the perfect knowledge about
the channel evolution, its instantaneous offloading behavior
should be highly similar to the NU scenario). For readability,
a zoomed-in version of Fig. 11(a) is presented in Fig. 11(b).
In the numerical results, S3 is not be affected by the channel
randomness at all, so we use only one curve to represent it. The
performance curves of S1 and S2 in are all labeled with HU,
MU and LU for the different channel randomness scenarios.
No matter what channel scenario is, S2 always completes
the computation offloading notably in advance, similar to the
Time-Varying Channels without randomness. It is interesting
to notice that in LU, S1’s behavior is similar to that in NU
scenario (Fig.8), but as the channel uncertainty increase to
MU and HU, S1 increase its offloading rate and finish before
the deadline T'; the higher channel uncertainty (HU V.S. MU)
is, the higher offloading rate is employed by S1, resulting in
earlier completeness of the offloading process. The reason for
that behavior is that in the highly uncertain channels, S1 will
select higher offloading rate than actually needed to avoid the
final penalty, since it is not sure about whether it can finish
before the deadline.

Fig. 12 illustrates the cumulated cost for a generic SMD
under different uncertainty scenarios. It can be observed
that in Fig. 12, S1 achieves the lowest total cost when the
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offloading finishes in LU channels, almost equal total cost
as S3 in MU channels, but higher cost than S3 in HU case.
This is because S1 depends on the accurate predication of
future channels to optimize its offloading decisions, as the
channel uncertainty rises, it prefers to offload as soon possible
to avoid having to transmit in an uncertain future, which
significantly increases its cost for both transmission and com-
putation. S2 always leads to highest cost in all three scenarios.
Therefore, S1 should be applied when the channel prediction
is relatively accurate, while the high uncertainty of the future
channels will dramatically degrade the performance of S1.

D. Design Insights of the MFEROS

Since the proposed scheme works for an infinite number of
players, its processing delay or required caching space of
it does not scale with the input data size or the number
of players. However, on the implementation side, since the
MFE-based optimum has to be calculated using the Finite
Difference Method (FDM), the processing delay of the pro-
posed scheme depends on the selected resolution of the
elements in FDM, e.g., the values of At, AQ,Ah. If their
values are too big, then the algorithm may not converge; while
if they are too fine-grained, then the processing delay will be
too large.

On the other hand, one may argue that in Figs. 7 and 8,
S2 finishes the job faster than the proposed algorithm therefore
the next set of jobs can be done right away, or the required
deadline might be extend to gain even lower cost. For the
first concern, this work focus on the applications that need
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Fig. 12.  The cumulated cost under different channel uncertainty scenarios.

to be completed before a given deadline with the minimum
possible energy consumption and computation cost, similar
to the applications investigated in [50]-[52]. For the second
concern,

Accordingly, we formulate the optimization problem to min-
imize a cost function that combines the energy consumption
of the smart mobile device (SMD) and the computation price
(to pay to the MEC) subject to a fixed deadline, where the
deadline cannot be extended as it is determined by the required
Quality of Service and the objective is not to minimize
the task completion time or maximize the transmission rate.
In our considered dynamic computation offloading scenario,
the combined transmission energy cost and computation cost at
the MEC becomes high when the wireless channel condition is
poor and/or when many SMDs are offloading simultaneously.
In order to minimize the cost function while meeting the given
deadline, the proposed MFG algorithm allows an SMD to
transmit more of its task bits to the MEC when its channel
condition is better and/or the computation price is lower, and
transmit less when its channel condition is worse and/or the
computation price is higher, based on its prediction of the
channel variation and the offloading decisions of other SMDs.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a close-to-optimal com-
putation offloading policy for the SMDs in an ultra-dense
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network while taking into account of both the task data state
and the dynamic channel state. First, a multi-player non-
cooperative DSG is defined to obtain the minimum cost for
each SMD. In order to simplify the computation complexity of
the Nash equilibrium for the game, a more tractable approach
based on the MFG theoretic framework is proposed. Based
on the mean field approximation, the coupled HIB and FPK
partial differential equations are derived. Then, a numerical
finite difference method is proposed to achieve the MFE in
an iterative manner. Finally, numerical results reveal that the
proposed MFE offloading strategy yields a much lower cumu-
lated cost than the existing strategies under the given latency
constraint. Our results also show that the performance of the
MEFE rate offloading strategy is sensitive to the uncertainty in
the prediction of future channel states.

In our future work, we will consider the following possible
leads:

Interference Management: in this work, uplink intra-
cell or inter-cell interference is not included for simplicity.
Actually, the interference management in the ultra-dense net-
work is extremely important, therefore the impact of interfer-
ences shall be included in the future work.

General Channel Model: in the problem formulation, we use
a simplified hypothesis for the channel variation model, but
our proposed method would still apply if «;(¢) and o;(t) were
different among SMDs, which scenario shall be detailed in our
future work.

General Traffic Model: in this work, the computation task is
assumed to be static, and the computation offloading periods
are synchronized. However, in practical networks, the compu-
tation tasks at SMDs may be dynamic, and the traffic could
be fluctuating both spatially and temporally, which may affect
the proposed algorithm. In our future work, we will inves-
tigate more realistic scenarios where the computation tasks
arrive continuously and the computation offloading periods
are unsynchronized and will study the effect of unsaturated
traffic [47] and [48].

Limited MEC Computation Capacity: In the current com-
putation model, we assumed that the MEC pool has suffi-
cient processing power, which means the latency for MEC
computation and queueing can be neglected. In our future
work, the MEC pool with limited computation capacity will
be considered, and the MEC processing delay and queueing
delay will be included in the optimization problem.
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