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Abstract

Novice programmers often struggle with problem
solving due to the high cognitive loads they face.
Furthermore, many introductory programming courses
do not explicitly teach it, assuming that problem solving
skills are acquired along the way. In this paper,
we present ‘PCDIT’, a non-linear problem solving
framework that provides scaffolding to guide novice
programmers through the process of transforming a
problem specification into an implemented and tested
solution for an imperative programming language. A
key distinction of PCDIT is its focus on developing
concrete cases for the problem early without actually
writing test code: students are instead encouraged
to think about the abstract steps from inputs to
outputs before mapping anything down to syntax. We
reflect on our experience of teaching an introductory
programming course using PCDIT, and report the
results of a survey that suggests it helped students
to break down challenging problems, organise their
thoughts, and reach working solutions.

1. Introduction

Learning programming from scratch is understood
to be challenging [1]. This is mainly due to the high
cognitive load involved in typical introductory courses:
novice programmers must learn language syntax, IDEs,
engineering principles (e.g. abstraction, modularity),
and computational thinking all for the first time. Until
their mental models have fully developed, novices
can struggle to get started on a harder programming
problem, sometimes taking a ‘syntax-first’ approach
of coding something—anything—before even analysing
how to properly solve it. This is compounded by the fact
that many introductory courses do not explicitly teach
problem solving skills and strategies, assuming instead
that they are picked up along the way [2].

Several authors have developed approaches for
guiding novice programmers through the process of

problem solving. For example, in their Python
textbooks, Dierbach [3] and Liang [4] proposed
frameworks based on the steps of the software
development life cycle, i.e. analysis/requirements,
design, implementation, and testing. Students are
encouraged to think about the input/output requirements
of the problem, “design a process for obtaining
the output from the input” [4], implement it, then
finally “test the program on a selected set of problem
instances” [3]. As another example, Loksa et al. [5]
proposed a framework that expands upon the design
phase by encouraging students to search for analogous
problems and solutions that can be applied to the one
they are tackling.

These approaches share a typical characteristic in
that testing is at the end of the process. Actually being
able to get to the end, however, depends on the student’s
level of metacognitive awareness, i.e. their ability to
think on their own about the problem [6]. For students
lacking metacognitive skills, previous research has
highlighted the benefit of solving concrete cases before
programming [7], as well as making the problem solving
process explicit (e.g. by using an automated assessment
tool) and having them reflect on their progress [8,
9]. Controlled experiments in these works revealed
that students are more likely to provide a correctly
implemented solution to a problem and demonstrate
better metacognitive awareness.

It is in this context that we developed ‘PCDIT’,
a problem solving framework for novice programmers
that encourages them to design/solve concrete cases
before programming, and to regularly reflect using
the five eponymous phases of the process (Figure 1):
Problem Definition, Cases, Design of Algorithm,
Implementation, and Testing. A key characteristic
of the framework is the ‘C’ phase, which focuses
on developing concrete cases for the problem early
without actually writing any test code: students
instead think about the steps at an abstract level, only
mapping them down to program syntax in later phases.
Another characteristic is its non-linearity: students are
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Figure 1. Steps of the PCDIT framework, including

some possible non-linear flows between them

encouraged to engage in a reflective, case-driven, and
iterative process that may feel more productive and
encouraging for novices [10]. The process keeps on
going until the programming task has been solved
satisfactorily, meaning that the proposed answer fulfills
all the requirements described in the problem statement,
and can operate correctly on all test cases. Ultimately,
the scaffolding of PCDIT makes the process of problem
solving that we naturally follow—but many novices do
not—explicit.

In this experience report, we introduce the PCDIT
framework, and describe how we used it in a first-year
undergraduate programming course, where it was
explicitly taught as a way to help solve more challenging
coding exercises. We present the results of a post-use
student survey that suggests it was successful in
helping students to organise their thoughts, break down
problems, and arrive at working solutions. We critically
reflect on our experiences—as software engineering
lecturers—of using it in teaching, and make a number
of recommendations on how to do so more effectively.
Finally, we share a PCDIT worksheet and a number of
examples that can be used by other practitioners.

2. Related Work

In the mathematical problem solving framework
described in Pólya’s book, “How to Solve It” [6], the
reader is told to: (1) understand the problem, (2) devise
a plan, (3) carry out the plan, and (4) look back
(i.e. evaluate the solution). In the second stage, the
reader is asked “Have you seen it before? Do you know a
related problem?”, implicitly suggesting that successful
problem solving requires an adequate knowledge base
or cognitive resources. On top of this, according to
Schoenfeld [11], successful problem solving requires

three other aspects in the learner: (1) heuristics
(strategies for making progress in unfamiliar situations),
(2) control (making decisions about strategies and
resources), and (3) beliefs (i.e. about the subject).

Some introductory Python programming
textbooks [3, 4] introduce problem solving
using a framework that is based on the software
development life cycle and is analogous to Pólya’s,
namely: (1) requirements and analysis, (2) design,
(3) implementation, and (4) testing. In the first stage,
Liang [4] tells the reader to use the requirements
identified to determine the input and output data for
the problem. Dierbach [3] points out that the reader
also needs to consider how the input data can be
represented in the program itself. For the remaining
stages, both authors then tell the reader to write the
algorithm, implement it in code, and then evaluate the
solution using test cases. While both books use worked
examples to illustrate concepts, Dierbach’s book also
has specific sections that illustrate the problem solving
process throughout the chapters.

Other authors adopt a framework that is similar
to Pólya’s, but with emphasis on different aspects.
McCracken et al. [12] highlights a stepwise refinement
strategy, citing the need to decompose the problem
into sub-problems with the following framework:
(1) abstract the problem from its description,
(2) generate sub-problems, (3) transform sub-problems
into sub-solutions, (4) recompose, and finally,
(5) evaluate and iterate. Loksa et al.’s framework [5]
tells the reader to draw upon a knowledge base of
existing problems in stages (2)–(4): (1) reinterpret
problem prompt, (2) search for analogous problems,
(3) search for solutions, (4) evaluation of a potential
solution, (5) implement a solution, and (6) evaluate
implemented solution.

Some authors propose that, at the problem analysis
stage, examples should be written to illustrate the
purpose of the program. Riley [13] describes requiring
students to write a problem definition which contains
a problem description, input and output specifications,
error conditions, and specific examples that illustrate the
input and outputs. In the six-stage process proposed in
“How to Design Programs” [14], the reader is told to
provide some functional examples in the initial stages of
problem analysis, prior to carrying out any design. This
involves providing specific pairs of input and output
values in order to illustrate the purpose of the function
to be written.

Studies have been done on the problem solving
ability of students in first-year programming courses.
While McCracken et al. [12] suggested that novice
learners of programming have no problem solving



ability, subsequent studies have concluded that reducing
students’ cognitive load might have a positive effect
on problem solving performance. In a study by
McCartney et al. [15], participants were provided
partially-completed code and allowed access to external
materials, thus reducing their cognitive load. Many
participants demonstrated the ability to program
incrementally. Utting et al. [16] showed that participants
who were provided with a test harness had better success
in completing an object-oriented programming task,
compared to those who had to rely solely on the program
description.

It has been pointed out that novice learners of
computing have “fragile knowledge” [17]. This was
illustrated in a study by Lister et al. [18], where novice
learners were shown to have a weak ability to read and
trace computer programs, lacking the prerequisite skills
for problem solving. Thus, pedagogical strategies have
been proposed to help novice programmers develop their
problem solving skills.

One pedagogical strategy has been to teach students
explicitly algorithmic solutions to known problems,
e.g. a counter-controlled loop, termed as “goals and
plans” by Soloway [19] and “algorithmic patterns”
by other authors [20, 21]. Soloway points out that
these must be explicitly taught to students. In the
problem solving process, students must apply a stepwise
refinement process and break down a problem into
sub-problems in such a way that these known patterns
can be used [19]. Clancy and Linn [22] point out that
regular classroom instruction must continually focus on
helping students to learn and apply these patterns.

A curriculum that used Soloway’s goal/plan
framework and explicitly taught 18 algorithmic patterns
was reported by de Raadt [23]. The study showed that
students successfully used these strategies more often,
compared to previous iterations of the course that only
exposed students to these patterns implicitly.

Specific instruction in class on problem solving has
also been used as a pedagogical strategy. Arshad [24]
used recitation sessions where teaching assistants
demonstrated solutions to programming problems and
articulated their thoughts aloud at the same time.
Students reported that this aspect of the course was most
useful for them.

Falkner and Palmer [25] described a class with three
interventions: live demonstrations of programming
examples, lessons that specifically discussed problem
solving, and encouraging cooperative problem solving
in students.

Loksa et al.’s study [5] seemed to show that
interventions designed to improve problem solving
skills and encourage metacognition had a positive effect

on novice learners. Participants in the study were
explicitly taught the problem solving framework. As
the participants worked on the programming tasks and
encountered difficulties, they were prompted to think
about which stage of the problem solving framework
they were in. The IDE used by the participants had
an “idea garden”, which was a set of problem solving
strategy hints which students could use.

Prather et al. [8] described metacognitive difficulties
that students faced, noting that many students
misunderstood the problem prompt and formed
the wrong conceptual model, began coding straightway
without designing the solution, and were not able to
respond correctly to feedback from error messages and
failed test cases. They also pointed out that current
automated assessment tools (AAT) did not have features
that facilitated students through Loksa et al.’s problem
solving framework.

Subsequently, an AAT was modified to require
students to solve a randomly generated test case after
being presented with the problem [7, 9]. Only
upon solving this test case are they allowed to begin
implementing their solution. This was based on
the hypothesis that this would facilitate students’
metacognitive awareness in the earlier problem solving
stages. It was shown that students who worked on the
test cases before their implementation showed better
problem solving outcomes compared to a control group.

There have also been AATs designed to require
students to input test cases together with their solution,
forcing them to demonstrate the correctness of their
solution. In the AAT used by Edwards [26], students
are graded both on their test suite and their solution.
Wrenn and Krishnamurthi [27, 28] augmented their
AAT with a tool for students to write test cases and
evaluate their thoroughness and completeness, which is
done prior to implementing the solution to the problem.
There was evidence that students used this tool prior to
implementation even when not required, suggesting a
change in student behaviour as a result of this tool.

3. Context

The motivation to develop a problem solving
framework for novice programmers came from
teaching “Digital World”, a first-year undergraduate
programming course at the Singapore University of
Technology and Design. Our institution primarily
offers four-year engineering degree programmes, which
students apply to after completing post-secondary
education. A unique characteristic of our programmes
is that they share a common first year, meaning that
every student is required to take our course, regardless



of what they ultimately major in.
Our course covers the fundamentals of

computational thinking and programming using Python,
and is designed to be accessible to students without any
prior experience in the language, taking them from the
basics (variables, types, conditionals) through to some
introductory object-orientation material. It is delivered
using elements of the flipped classroom [29, 30, 31]:
before coming to class, students are expected to read
some instructor-prepared materials and complete a
reading quiz, so that they can be primed and ready to
focus on exercises and deeper technical discussions
during class. Our materials are hosted on Google
Colab [32] (a hosted Jupyter Notebook [33] interface),
which allows for code snippets to be run in the browser
and thus makes examples more interactive.

As the course is taken by every undergraduate
student at our institution, it caters to a wide range of
abilities and backgrounds in programming—including
none. In previous years, we found that novice
programmers were often struggling with where to start
on any exercise that went beyond the very basics.
Novice programmers would often take a ‘syntax-first’
approach, where they would type some code that
they saw earlier without really thinking about what it
does, or whether it takes any steps forward towards
the solution, eventually leading to tangled-up code
that has them demotivated and hitting a brick wall.
Observing this pattern year after year led us to design
the problem solving framework of this paper: we wanted
to encourage such students to reflect, organise their
thoughts, think through the problem at an abstract level,
and only look for the right syntax/constructs once the
problem and solution are clear.

4. Our Intervention: PCDIT

PCDIT Framework. Our pedagogical intervention was
the design of the PCDIT framework and the decision
to explicitly teach it in our introductory programming
course. The five key steps of the framework are given
in Figure 1, and are intended to capture the problem
solving process that we (as instructors) naturally follow,
but that novice programmers are not yet familiar with.
By naming the steps and providing an acronym, we
make it easier for students to reflect on where they are in
the problem solving process, potentially increasing their
metacognitive awareness [8, 9]. It is important to note
that instructors and students are encouraged to go iterate
between the steps as their thinking brings clarity.

In general, the process begins with forming a
Problem Definition: students are asked to identify the
types of inputs and outputs and summarise in natural

language what it is that needs to be solved (e.g. “take
a single string value as input, then return the reverse
of that string as output”). This step is common to
many problem solving frameworks in understanding the
problem and formulating it. Similar to Dierbach [3],
students are encouraged to provide more detail on the
kind of data involved in both the input and the output and
how it can be represented in the program. This step also
requires students to summarise the problem in a single
statement, similar to Riley’s ‘general description’ [13].

The second phase asks students to develop concrete
Cases, i.e. before even thinking about the algorithm.
The intention is for students to conceptualise the abstract
steps from concrete inputs to outputs, helping them to
generalise to an algorithm more easily in later parts
of the framework. The Cases step is similar to the
functional examples in “How to Design Programs” [14].
As students work on various concrete cases, they can
also step back and revise their problem definitions,
e.g. adding additional information about the required
data types. This step is crucial for novice programmers,
many of whom do not have any existing algorithmic
patterns or schemas: it may be difficult for such
students to search for analogous problems as in Loksa’s
framework [5]. They need to build the solution from the
bottom up and this concrete Cases step provides a bridge
to figure out the algorithmic solution in the next step.
As discussed in Section 2, working out specific concrete
cases helps students to understand the problem better,
and there is evidence it helps them in implementing their
solutions. We highlight that while some frameworks
encourage students to write cases as part of their testing
code, in PCDIT, they focus on working out the abstract
steps (e.g. on paper) from concrete inputs to outputs.

Once students have worked on these concrete cases,
they can begin the Design of Algorithm phase: for
each concrete input/output, we ask them to enumerate
the steps they did in working out the concrete Cases.
They are asked to look back on how they arrive at
the output starting from the input. We then ask
them to identify patterns in those steps and generalise
them to computational steps. These steps can be
written in a mix of pseudo-code and (precise) natural
language—whatever the student is currently more
comfortable with. This part can be iterated several
times, starting with more coarse subgoals/descriptions,
before refining them over the iterations, e.g. by
employing specific key words/phrases, such as “for
every element in. . . ”, “as long as. . . ”, or “compare
if. . . ”. Using specific keywords that sound similar to
programming language syntax eases the transition from
pseudo-code to actual code later. Figures 2–3 illustrate
how one can take some concrete Cases for a problem



Figure 2. ‘P’ and ‘C’ steps examples for list of

positive numbers

Figure 3. ‘D’ and ‘I’ steps examples for list of

positive numbers. The initial ‘I’ step in this example

contains an error, discovered in the ‘T‘ step

and start to sketch an algorithm Design in an intuitive
(but not yet fully refined) way. (Further examples are
available in Examples 1–3 of [34].)

In the subsequent steps, students start to map the
pseudo-code of their solution down to concrete Python

in the Implementation phase. In our teaching, we
iterate this part of the framework with the Testing
phase, ensuring that students are regularly testing their
programs after completing every few lines of mapping.
This helps to ensure novices feel motivated and
productive by tackling smaller/feasible sub-problems
one-by-one. In testing their code, students can use
some of the Cases identified earlier, or propose new
ones that potentially highlight the need to go back
and improve other aspects of the algorithm further.
The Implementation step in Figure 3 actually contains
a syntax error in the list operation, illustrating the
importance of going back and revising the initial
implementation after the Testing step.

We created a PCDIT worksheet that we share with
students when teaching the framework [34]. Among
our supplementary materials, we include fully worked
examples (matrix multiplication, extraction of positive
numbers of a list, etc.) using our PCDIT worksheet [34].

Implementation. We now describe how the framework
was taught in our first-year programming course
(Section 3), and how we elicited the reflections of the
students using an optional survey.

The instructors explicitly introduced the PCDIT
framework in the third or fourth week of the
course, when students began to see more complicated
problems, e.g. dealing with loops and a combination
of conditionals and iterations, together with the string,
list, and dictionary data types. The problems that the
instructors used to demonstrate the PCDIT framework
involved the synthesis of several concepts such as: (1)
manipulating strings using loops and conditionals, and
(2) operations involving dictionaries or lists. Fully
worked examples of these problems can be found in our
supplementary material [34].

In the lesson segment involving the PCDIT
framework, after a brief introduction, instructors would
show the problem to the students, and show how the
PCDIT framework should be used by filling up the
worksheet and displaying the process on the projector.
Students were reminded that writing the code would
only begin after some iterations through the first three
stages had been satisfactorily completed. The segment
then ended with a live coding demonstration showing
how the completed PCDIT worksheet could be used in
conjunction with the code that was written.

At the end of the lesson segment, an instructor from
a different class came to invite students to fill in a survey
on their experience of applying PCDIT. The survey was
done online and a follow-up interview was available for
those who were willing to take part. The survey asked
them about their confidence in problem solving and their



computing self-efficacy [35, 36]. We also asked whether
the PCDIT framework helped them in their problem
solving process and in writing Python code.

5. Survey Results

Our optional survey elicited 47 responses from
three classes, indicating a response rate of about
35%. Of these, 25 students were female and 22
were male. Before joining our university, the majority
of respondents (66%) had studied at junior colleges,
i.e. institutions that offer pre-university courses such
as the GCE Advanced Levels or the International
Baccalaureate Diplomas. Other students had studied
at polytechnics (12%) and international schools (20%).
A number of students (38%) had previously written
more than 500 lines of code, whereas 40% had
written between 50-500 lines, 18% had written between
1-50, and 3% had never written any. Only eight
students explicitly reported using Python (the language
of our course) in the past; other students reported
some experience in C++, Java, and web programming
languages (e.g. HTML, JavaScript). Finally, 49%
of the students indicated that they were interested
in majoring in our information systems or computer
science programme, i.e. likely indicating an explicit
interest in programming.

The results in Figure 4 indicate that the survey
participants show positive interest towards problem
solving. The scores in Figure 4(a) tend to be above 3.0
(on a 5-point Likert scale). The results also correlate on
the effort that they would put in when solving a problem.
Figure 4(b) strongly suggests that most participants put
in effort when faced with problem solving tasks. On
the other hand, the survey result on their confidence
level in solving a problem is not as high as their
interest and effort. It can be seen from Figure 4(c)
that the overall Likert average score is only slightly
above 3 (3.4) for the positive statement “I am sure I
can solve a problem”. The negative statement “I lose
self confidence if I cannot solve a problem” also results
in a score of 3.3 which shows the ambivalence of the
respondents’ self-confidence in solving problems.

Figure 4(d) suggests agreement that the PCDIT
framework, after being explicitly taught in class, helped
the respondents to solve programming problems and
write code. Both of the average Likert scores were about
3.7 out of 5.0. We did not see any respondents choosing
score 1 (Strongly Disagree) and saw only one student
choosing score 2 (Disagree). This shows that majority
of respondents (62%) find the framework helpful in their
problem solving and in mapping the solution to code.

In Figure 5, we break down the results further by

plotting the PCDIT responses against the respondents’
programming backgrounds (i.e. lines of code written
before the course). There was only one student who
had written 0 lines in the background survey, and that
student chose “Undecided” for whether the framework
is helpful. Other respondents leaned towards agreement
or strong agreement. We also observed an interesting
result in that there were those who had written more
than 500 lines and yet still continued to strongly agree
that the framework helps them in solving programming
problems and writing the code.

We also asked students what they found most useful
from the framework. A number of students commented
on its systematic nature and step-by-step approach.
They also mentioned that the framework helps their
thinking or thought process. In fact, the pause it forces
before writing the code actually helps them in solving
the problem itself. Below are a few quotes from the
students’ comments:

When you write out the thinking process it helps to
solve the problem.

The pause it forces me to take before solving
something; sometimes I can be too anxious and jump
to conclusions without having thought carefully about
the problem.

Another point that we see from the comments is
related to Testing. Quite a number of comments
indicated that the framework helps them to better test
the code, as shown by the following quotes.

Check potential problems.

Testing codes using different test cases.

We also asked what they found to be least helpful
with regards to this framework. Most of the respondents
indicated that it is time consuming. One response
explicitly said that such a step may be good for
beginners but not for experienced programmers.

It’s good for beginners, but may be time consuming for
experienced programmers.

One response commented that they do not know the
difference between the Cases step and the Testing step
as seen from the quote below.

C:Test cases. Is this not also a part of T:Testing?

We will take up the survey results, students’
comments as well as instructors’ reflection in the
following section for our reflection and discussion.



(a) Questions on interest in problem solving (b) Questions on effort to solve problems

(c) Questions on confidence to solve problems (d) Questions on the helpfulness of the PCDIT framework

Figure 4. Results (5-point Likert scales) from our post-use student survey on problem solving and PCDIT

Figure 5. Survey results (5-point Likert) regarding

PCDIT plotted against pre-course coding experience

6. Critical Reflections

In this section, we reflect and discuss our
experiences of using the PCDIT framework to teach
students problem solving in our programming course.
First, we reflect on the viewpoints of students who used
the framework. Next, we discuss the reflections of
instructors who facilitated it during class.

Student Reflections. The survey respondents had
varied programming backgrounds. Quite a number
of them had actually written some code in the past,
with only 20% having written 50 lines or fewer. This

likely explains the strong positive scores for interest
and effort in our questions. Despite this, we noticed
some ambivalence with respect to confidence in solving
problems. This means that even though the students
tend to enjoy solving problem and have some experience
in writing computer code (more than 30% had written
more than 500 lines of code), their confidence level in
solving a problem is not high. This shows awareness
from the students that being able to solve problems is
not the same thing as simply writing code.

The breakdown shown in Figure 5 gives some
insight into how students’ programming background
may affect their perception of the PCDIT framework.
As mentioned, no student chose ‘Strongly Disagree’
and only one student chose ‘Disagree’ when asked
whether the framework helps them. In general, the
majority of students agreed or strongly agreed that
the framework helped them. More students chose
‘Undecided’ as a response for the question on whether
the framework helps them to write computer code as
compared to whether the framework helps them in
solving programming problems. This suggests that the
framework helps more on thinking through the problem
solving process. This also could mean, that for most
students, they need more help on the problem solving
process rather than on finding the right syntax to use.

What is interesting, however, is that the majority of
students who had written more than 500 lines of code
found the framework helpful. These are students with
some programming experience and who may have learnt
Python syntax previously. This again agrees with the



observation that the framework’s main contribution is
on the problem solving process. For these students,
mapping a solution to Python code seems not to be
one of their main challenges. This also could be the
reason why more of them voted favourably about the
framework.

These conclusions are strengthened further when
taking the students’ written comments into account.
Most students indicated that the framework helps them
in organising their thoughts, in the process of thinking
through the problem, and in making their thinking
process more systematic. None of them mentioned that
it helps them to actually write the Python code. So
it is more on the process of problem solving that the
framework appears to contribute.

On the other hand, the very same advantage provided
by the framework can also be considered one of its
disadvantages: the thinking process and the stages of
the framework consume more time. In the context of a
synchronous class or exam, students may be reluctant to
use such a method. One way to speed up the application
of PCDIT would be to write both the Problem Definition
and Design of Algorithm steps in the editor or AAT
itself, e.g. as part of the code’s comments.

One of the students who volunteered for a follow-up
interview gave further insight on how students with
experience in programming use this framework. The
student recognised that these steps are some of the
things he subconsciously does when solving a problem.
The framework helps to make the thinking process
more explicit and clear. Moreover, he also stated
that he found it useful for more complicated problems
where the solution is not a one-liner program. This
agrees with the purpose of the framework which is to
help with the problem solving difficulties that students
face when solving more complex exercises. Another
interesting point from the interview was that he actually
went through the PCDIT process when doing his group
programming assignment. They started by formulating
the problems. Then, they tried to identify the functions
by trying to work out the different cases. He explicitly
said that the framework was used to facilitate a kind of
group discussion or brainstorming process for solutions.
This shows that the framework can be used not only by
individuals but also as a group in a collaborative work.
Further study on how this framework can be applied in
a group setting should be explored.

Instructor Reflections. Three instructors involved in
teaching the PCDIT framework were asked to share their
reflections. All three found that the framework is natural
and makes explicit what it is they naturally do when
teaching programming. For example, one of them said:

I realized that many parts of PCDIT are implicitly built
into the problem sets that I designed.

Another mentioned that the PCDIT structures what
it is he does when solving problems himself:

The framework is well structured and the acronym
seems easy enough to be remembered by the students. I
have also realised that the PCDIT approach is actually
more or less the approach I am using in practice.

With respect to the difficulties in teaching using
the framework, most of them identified the second
step—working on the Cases—to be one that students
find challenging, and that more time should be spent
during class to cover it. One of them stated that most
students do not see the difference between the Cases and
Testing stages and more emphasis on their difference
should be done in the teaching. One example on how
Cases and Testing stages differ can be found in Example
3 in [34]. In this example, the Testing step helps to
identify an error when adding an item into a list which
is particularly dependent on the programming language
syntax and features. On the other hand, the Cases step
guides the design of algorithm and would not be able
to detect such mistakes. Example 4 in [34] shows how
Cases can be related to the Testing. In this example,
the same test case is used. Observing the identical
output of the print statements and the previously worked
Cases allows the students to relate the Testing of their
implementation to their previous Cases step.

Two of the instructors highlighted students’
reluctance to spend time planning their solutions on
paper. One instructor wrote the following reflection:

When it comes to the problem analysis, I see very
few students trying to figure out the problem on paper
first. They often try their luck in code and use a
trial-and-error approach, basically trying to figure
what could be the code that will satisfy the given test
cases. This is not the right approach to coding, and I
often have to force students to go back to analyzing the
problem on paper.

Instead of Cases, one of the instructors found the
Design of Algorithm and Implementation stages to be
the main difficulty. He also highlighted that students
were unwilling to spend time to plan their solutions
before actually implementing them. This agrees with
students’ comments in the sense that students found the
framework to be time consuming. But it is exactly
this time spent in planning the solutions that enables
students to successfully solve the problem. As one of
the instructors put it:

I genuinely think that the framework is not only helpful
for novice programmers but for any programmer
trying to solve a complex task. We actually got a lot
of positive feedback for it. However, it is only useful
for students who want to use it! The main difficulty
consists of convincing the students to work on paper
first. Moreover, many of them think it takes too much
time doing so.



The instructors noticed a few pitfalls. In particular,
the framework is demonstrated over an example. From
a particular case, the instructor explains how it helps
in deriving a rough draft of a pseudo-algorithm. For
example, to explain how to write a Python program
calculating the product of two matrices, after the
problem statement, the instructor chooses two simple
matrices, multiplies them on the board while orally
decomposing the work process. This example helps
in drafting a pseudo-algorithm and defining a first test
case. However, some students tend to believe that
testing this particular case is enough. Instructors should
facilitate from the particular case to more general steps
by discussing different Cases. Moreover, instructors
must explicitly highlight the differences between the ‘C’
and the ‘T’. The students should be reminded that the
final phase is not only performed to catch the syntactic
bugs of their programs or check whether the inputs
corresponding to the particular case lead to the expected
result. It is also a step to test the limits of their programs
and see if it works with a more general case beyond what
they did in the Cases step. For example, what happens if
a list of lists (a typical matrix representation in Python)
contains an empty sub-list? What if the values are not
all numerical? What if the sub-lists do not have the same
length? Encouraging the students to be ‘malicious’ with
their own functions seemed to have an impact on some
students who then tried to build ‘unhackable’ programs.

Moreover, it was recognised that the framework does
not reduce the need to know the programming language
and its syntax. In fact, an instructor stated that some
students still struggled with the Design of Algorithm and
Implementation stages. The reason for this difficulty
is that many students are not familiar with the syntax.
Therefore, as important as the problem solving steps
are, the exercises and training on the language itself
remain necessary for the whole PCDIT framework to be
applied. This agrees with Linn and Clancey [37] who
argued that both competencies are necessary.

Open Questions. We are encouraged by the positive
results in the survey, and the reflections from our
students and instructors, which increase our confidence
in the effectiveness of using the PCDIT problem solving
framework in teaching. These results and reflections
have prompted us to ask a number of further questions,
many of which could be addressed in formal studies.

For example: must the framework be facilitated
by a human instructor? Can the framework be used
by students independently without any help from any
instructor or can it only be used with some facilitation?
Can the role of the instructor be replaced through
other means in order to facilitate students’ use of the

framework? For example, can a more guided and
detailed worksheet be used in this case? Can such
facilitation be automated?

Another question of interest is regarding how we
should implement and integrate this framework in
our lessons? One of the highlighted issues is the
perception that the PCDIT framework consumes a lot of
time. How should the framework be implemented with
such constraints and perceptions? Can we implement
the framework in such a way that both students and
instructors find the time taken is well spent? Would
incorporating it into an AAT address this? How early
should the framework be taught?

Lastly, we found that PCDIT might be useful not
only for individual approaches to problem solving
but also for group discussions when approaching a
programming assignment. Further study should be done
on how such framework can be used in a group setting
and whether modifications are needed in the framework
when collaborative learning is in place.

7. Conclusion

In this experience report, we presented PCDIT, a
problem solving framework for novice programmers,
designed to incorporate recommendations from the
literature on improving metacognitive awareness. In
particular, it encourages students to design/solve
concrete cases well before any programming, and
promotes regular reflections across the five main phases
of the the process. We described our implementation of
it for an introductory programming course, and showed
how the framework’s Cases step and non-linearity
help novices to increase their confidence and better
manage their cognitive load. In a post-use student
survey, 62% agreed or strongly agreed that it helped
them to solve programming problems, with several
highlighting that PCDIT helped them to organise their
thoughts, solve problems systematically, and avoid
jumping to conclusions without thinking through the
problem first. Our instructors also reflected positively,
highlighting a number of benefits, including PCDIT’s
clearly named steps (helping students reflect on where
they are in the problem solving process), and the
fact that its scaffolding explicitly mirrors the problem
solving process we naturally follow (but that many
novices don’t). In future work, we plan to explore the
use of the framework in the context of collaborative
learning, and how its steps can be integrated into our
automated assessments tools (similar to [9]).



References

[1] C. Kelleher and R. Pausch, “Lowering the Barriers to
Programming: a survey of programming environments
and languages for novice programmers,” Science,
vol. 37, no. 2, pp. 83–137, 2005.

[2] M. De Raadt, M. Toleman, and R. Watson, “Training
strategic problem solvers,” SIGCSE Bull., vol. 36, no. 2,
pp. 48–51, 2004.

[3] C. Dierbach, Introduction to computer science using
Python: a computational problem-solving focus.
Hoboken: John Wiley & Sons, 2013.

[4] Y. D. Liang, Introduction to Programming Using Python.
Pearson, 2012.

[5] D. Loksa, A. J. Ko, W. Jernigan, A. Oleson,
C. J. Mendez, and M. M. Burnett, “Programming,
problem solving, and self-awareness: Effects of explicit
guidance,” in CHI, pp. 1449–1461, 2016.
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